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THAPBI PICT, Release 1.0.13

THAPBI PICT is a sequence based diagnostic/profiling tool from the UK funded Tree Health and Plant Biosecurity
Initiative (THAPBI) Phyto-Threats project, initially focused on identifying Phytophthora species present in Illumina
sequenced environmental samples.

Phytophthora (from Greek meaning plant-destroyer) species are economically important plant pathogens, in both agri-
culture and forestry. ITS1 is short for Internal Transcribed Spacer one, which is a region of eukaryotes genomes between
the 18S and 5.8S rRNA genes. This is commonly used for molecular barcoding, where sequencing this short region
can identify species.

With appropriate primer settings and a custom database of full length markers, THAPBI PICT can be applied to other
organisms and/or barcode marker sequences - not just Phytophthora ITS1. It requires overlapping paired-end Illu-
mina reads which can be merged to cover the full amplicon marker. Longer markers or fragmented amplicons are
not supported. Internally it works by tracking unique amplicon sequence variants (ASVs), using MD5 checksums as
identifiers.

The worked examples include oomycetes, fungi, fish, bats, and plants, and cover markers in ITS1, ITS2, 12S, 16S, COI,
and more. The main criteria has been mock communities with known species composition.

The THAPBI Phyto-Threats project was initially supported by a grant funded jointly by the Biotechnology and Bio-
logical Sciences Research Council (BBSRC), the Department for Environment, Food and Rural affairs (DEFRA), the
Economic and Social Research Council (ESRC), the Forestry Commission, the Natural Environment Research Council
(NERC) and the Scottish Government, under the Tree Health and Plant Biosecurity Initiative (THAPBI).

Key links:

• Documentation on Read The Docs: https://thapbi-pict.readthedocs.io/

• Source code repository on GitHub: https://github.com/peterjc/thapbi-pict/

• Software released on PyPI: https://pypi.org/project/thapbi-pict/

• Zenodo DOI for software: https://doi.org/10.5281/zenodo.4529395

• Paper on PeerJ: https://doi.org/10.7717/peerj.15648
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CHAPTER

ONE

INTRODUCTION

THAPBI PICT is a tool designed to assess species content of metabarcode amplicons sequenced using an overlapping
paired-end Illumina protocol. The input data is paired FASTQ files (one pair for each sample), from which unique
sequences (commonly called unique amplicon sequence variants, ASVs) and their abundance are reported alongside
one or more matching species or genus names.

In this illustrative flow chart of the default pipeline, the input paired FASTQ files are green, the intermediate per-sample
FASTA and TSV files are yellow, and the output reports are in orange. The individual steps of the pipeline are dark
blue boxes.
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1.1 Read preparation

The first stage of the pipeline goes from a set of paired FASTQ files to a set of non-redundant primer trimmed FASTA
files and sample tallies per marker. This currently runs as follows:

1. Merge overlappping reads into single sequences, using Flash (Magoc and Salzberg 2011).

2. Filter for primers and trim to target region, using Cutadapt (Martin 2011).

3. Tally unique sequences per sample per marker.

4. Optionally apply UNOISE read correction (de-noising).

5. Apply a minimum abundance threshold (guided by any negative controls).

1.2 Sequence classification

The second stage of the pipeline offers a choice of classifier algorithms:

• 100% identity (identity). Requires the primer trimmed read sequence match a database entry exactly. The
database entries must be trimmed too.

• Up to one base pair away (onebp, the default). Like the identity classifier, but allows a single base pair edit (a
substitution, deletion, or insertion).

• Up to one base pair away for a species level match (like the default onebp method), but falling back on up to
2bp, 3bp, 4bp, . . . away for a genus level match (1s2g, 1s3g, 1s4g, . . . ).

• Perfect substring (substr). Like the identity classifier, but also allows for the query sequence to be a perfect
substring of a database entry. Useful if the database entries have not all been trimmed exactly.

• Top BLAST hit within database (blast). This classifier calls NCBI BLAST with a local database built of the
database sequences, and takes the species of the top BLAST hit(s) subject to some minimum alignment quality
to try to exclude misleading matches.

These have different strengths and weaknesses, which depend in part on the completeness of the database for the target
environment. The identity, substr and onebp classifiers are very strict, and with a sparse database could leave a
lot a lot of sequences with no prediction. On the other hand, the blast classifier is much more fuzzy and will make
classifications on much looser criteria - but with a sparse database those matches could easily be false positives.

In assessing the classification performance, it is the combination of both classification method (algorithm) and marker
database which which matters.

1.3 Classification output

The classifier output is at unique sequence level, reporting zero or more species matches (or genus matches from some
classifiers, or if sequences in the database are recorded at genus level only).

For example, an ITS1 sequence from a known Phytophthora infestans single isolate control can in addition to this
expected result also perfectly match sister species P. andina and P. ipomoeae. Here the classifier would report all three
species (sorted alphabetically), giving:

Phytophthora andina;Phytophthora infestans;Phytophthora ipomoeae

If additionally the query sequence matched genus level only Phytophthora entries in the database, that would be redun-
dant information, and not reported in this example.

4 Chapter 1. Introduction
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Neither in this raw classification output, nor the provided reports, does THAPBI PICT currently attempt any simiplifi-
cation like last reporting the common ancestor of a complex result. For the initial use case focused on Phytophthora,
this is simply not needed.

1.4 Reporting

There are currently three main reports produced (in multiple formats including formatted Excel spreadsheets).

• Sample report. Table with samples as rows, and genus and species as columns, with combined sequence counts
as values. Includes a total row, and unclassified counts as additional column. Can include sample metadata as
additional columns.

• Read report. Table of unique sequences as rows, and samples as columns, with read counts (sequence abun-
dance) as values. Includes any species classification and the sequences themselves as additional columns. Can
include sample metadata as additional header rows.

• Edit graph. Represents all the unique sequences in the sample (plus optionally all those in the reference database)
as nodes with edges between them for edit distance (solid black lines for 1bp, dashed grey for 2bp, and dotted
grey for 3bp away). Any sequences also in the database are colored.

These are discussed and excerpts shown in the worked examples later in the documentation.

1.4. Reporting 5
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CHAPTER

TWO

INSTALLATION

2.1 First time installation

We recommend installing this tool on Linux or macOS using the Conda packaging system, via the BioConda channel,
which will handle all the dependencies:

$ conda install thapbi-pict

Alternatively, since the software is on the Python Package Index (PyPI), the following command will install it along
with its Python dependencies:

$ pip install thapbi-pict

However, in this case you will still need to install at least the command line tool flash (for merging Illumina paired
reads), and optionally others like NCBI BLAST+ (used for one classifier method). If you have BioConda setup, use
the following:

$ conda install --file requirements-ext.txt

If you are not using Conda, then on a typical Linux system most of the tools required will be available via the default
distribution packages, although not always under the same package name.

On Debian (with the efforts of DebianMed), or Ubuntu Linux, try:

$ sudo apt-get install ncbi-blast+

If you are on Windows, and do not wish to or cannot use the Windows Subsystem for Linux (WSL), the tool can be
installed with pip, but you will have to manually install the command line dependencies. Download a pre-compiled
binary from https://ccb.jhu.edu/software/FLASH/ and BLAST+ (if required) from the NCBI, and ensure they are on
the system PATH. To run the test suite and worked example scripts, you will also need a bash shell with basic Unix
tools like grep.

If you want to install the very latest unreleased code, you must download the source code from the repository on GitHub
- see the CONTRIBUTING.rst file for more details.

Once installed, you should be able to run the tool using:

$ thapbi_pict

This should automatically find the installed copy of the Python code. Use thapbi_pict -v to report the version, or
thapbi_pict -h for help.

7
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2.2 Updating

If you installed via conda, this should work:

$ conda update thapbi-pict

If you installed via pip, this should work:

$ pip install --upgrade thapbi-pict

Either way, you can check the installed tool version using:

$ thapbi_pict -v

8 Chapter 2. Installation



CHAPTER

THREE

QUICK START

Here we describe a simplified use of the THAPBI PICT tool to assess a single Illumina MiSeq sequencing run. The
input data is a set of paired FASTQ files (one pair for each sample), perhaps barcoded samples from a 96-well plate.

In this illustrative flow chart of the default pipeline, the input paired FASTQ files are green, the intermediate per-sample
FASTA and TSV files are yellow, and the output reports are in orange. The individual steps of the pipeline are dark
blue boxes.

We will now describe how to run the thapbi_pict pipeline command, which will process the samples, make
classifications, and summary reports.

9
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$ thapbi_pict pipeline -h
...

3.1 Setup

We assume you have a new folder dedicated to this analysis, with a sub folder raw_data/ which contains the demulti-
plexed paired FASTQ files which are named like <sample_name>_R1.fastq.gz and <sample_name>_R2.fastq.
gz as provided by your sequencing centre. The tool understands a few widely used naming patterns. We recommend
that you do not decompress the FASTQ files (as <sample_name>_R1.fastq and <sample_name>_R2.fastq), leav-
ing them gzip compressed is preferable for disk space.

$ cd /path/to/my/project/
$ ls raw_data/*.fastq.gz
...

We will make two additional sub-folders, intermediate/ (for the per-sample prepared FASTA files), and summary/
for the folder level reports.

$ mkdir -p intermediate/ summary/

3.2 Running

With that done, we run the thapbi_pict pipeline command, which for a single 96 sample Illumina MiSeq run
should take a minute or so:

$ thapbi_pict pipeline -i raw_data/ -s intermediate/ -o summary/thapbi-pict
...
Wrote summary/thapbi-pict.ITS1.samples.onebp.*
Wrote summary/thapbi-pict.ITS1.reads.onebp.*
All done!

This is robust to being interrupted and restarted (as long as you are not changing settings), and will reuse intermediate
files:

$ thapbi_pict pipeline -i raw_data/ -s intermediate/ -o summary/thapbi-pict
...
Skipped 120 previously prepared ITS1 samples
...
Wrote summary/thapbi-pict.ITS1.samples.onebp.*
Wrote summary/thapbi-pict.ITS1.reads.onebp.*
All done!

All being well, this will produce a set of report files, with names starting with the prefix summary/thapbi-pict.*
given as follows:

$ ls -1 summary/thapbi-pict.*
summary/thapbi-pict.ITS1.onebp.tsv
summary/thapbi-pict.ITS1.reads.onebp.tsv
summary/thapbi-pict.ITS1.reads.onebp.xlsx

(continues on next page)

10 Chapter 3. Quick Start
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(continued from previous page)

summary/thapbi-pict.ITS1.samples.onebp.tsv
summary/thapbi-pict.ITS1.samples.onebp.xlsx
summary/thapbi-pict.ITS1.tally.tsv

Warning: This minimal example omits a key consideration - telling the tool which samples are negative controls,
and/or manually setting the minimum read abundance.

3.3 Intermediate FASTA files

The first stage of the pipeline can be run separately as the thapbi_pict prepare command. Here each pair of FASTQ
files named something like <sample_name>_R1.fastq.gz and <sample_name>_R2.fastq.gz is processed to give
a much smaller FASTA format files <marker_name>/<sample_name>.fasta for each marker, containing all the
unique sequences from that sample which have the expected primers (so here should resemble an ITS1 sequence or our
synthetic controls).

In these FASTA files, each sequence is named as <checksum>_<abundance> where the MD5 checksum of the se-
quence and is used as a unique shorthand - a 32 character string of the digits 0 to 9 and lower cases letters a to f
inclusive. These MD5 checksums are used later in the pipeline, including in the read reports.

The intermediate FASTA files start with a header made of multiple lines starting with #, which records information
about the sample for use in reporting. This includes which marker this was and the primers, how many raw reads the
FASTQ files had, how many were left after pair merging, and primer trimming. Many third-party tools will accept
these files as FASTA without complaint, but some tools require the header be removed.

The second stage of the pipeline can be run separately as the thapbi_pict sample-tally command. This produces
a sequence versus sample tally table as a tab-separated table (TSV file), with the sequences as the final column. This
is file summary/thapbi-pict.ITS1.tally.tsv in the above example.

This step can optionally produce a pooled non-redundant FASTA file with all the observed marker sequences in it (and
the total read abundance).

3.4 Intermediate TSV files

The third stage of the pipeline can be run separately as the thapbi_pict classify command. Here species pre-
dictions are made for each sequence in the prepared sequence vs sample tally file, generating a TSV file where the
first column is the sequence name in <checksum>_<abundance> format. This is file summary/thapbi-pict.ITS1.
onebp.tsv in the above example.

3.5 Sample Reports

The first set of reports from the pipeline or thapbi_pict summary command are the sample reports - using the
filenames from the above example:

• Plain table summary/thapbi-pict.ITS1.samples.onebp.tsv (tab separated variables, TSV) which can be
opened in R, Excel, or similar.

• Visually formatted table summary/thapbi-pict.ITS1.samples.onebp.xlsx (Microsoft Excel format), with
the same content but with colors etc applied.

3.3. Intermediate FASTA files 11
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These aim to give a summary of the species identified within each sample. The tables have one row for each sample.
The main columns give total read counts, those not matched to anything (“Unknown”), reads matched at species level
(with ambiguous combinations listed explicitly), and reads matched only to genus level.

In the Excel version, conditional formatting is used to highlight the non-zero counts with a red background.

3.6 Read Reports

The other report from the pipeline or thapbi_pict summary command is more detailed, being at the level of the
unique sequences or reads. Again using the filenames from the above example:

• Plain table summary/thapbi-pict.ITS1.reads.onebp.tsv (tab separated variables, TSV) which can be
opened in R, Excel, or similar.

• Visually formatted table summary/thapbi-pict.ITS1.reads.onebp.xlsx (Microsoft Excel format), with
the same content but with colors etc applied.

This read report has a row for each unique sequence. The first columns are the unique sequence MD5 checksum, any
species prediction, the sequence itself, the number of samples it was detected in above the threshold, and the total
number of times this was seen (in samples where it was above the threshold). Then the main columns (one per sample)
list the abundance of each unique sequence in that sample (if above the threshold).

In the Excel version, conditional formatting is used to highlight the non-zero counts with a red background.

3.7 Edit Graph

While not run by the pipeline, there is a separate thapbi_pict edit-graph command, where the default output is:

• Edit-distance graph XXX.edit-graph.xgmml (XGMML, eXtensible Graph Markup and Modeling Language)
which we recommend opening in Cytoscape.

Note that thapbi_pict edit-graph supports other node-and-edge graph file formats, and can produce a static PDF
image as well using GraphViz and other dependencies, or a distance matrix.

3.8 Next Steps

This minimal example omits a key consideration which is telling the tool which of the samples are your negative controls
and/or manually setting the minimum read abundance.

Also, interpreting the main reports is much easier if you can provide suitably formatted metadata. Happily, you can
quickly re-run the pipeline and it will reuse any already generated intermediate files.

12 Chapter 3. Quick Start
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The first worked example covers these issues, with excerpts of the expected output.
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CHAPTER

FOUR

WORKED EXAMPLES

While THAPBI PICT stands for Phytophthora ITS1 Classification Tool, with appropriate primer settings and a custom
database, it can be applied to other organisms and/or barcode marker sequences.

These worked examples use public datasets from published papers, with various markers covering oomycetes, fungi,
animals and plants. The main criteria has been mock communities with known species composition.

4.1 Environmental Phytophthora ITS1

This example is based on the following paper from earlier in the THAPBI Phyto-Threats project, where the original
analysis used the precursor pipeline metapy:

Riddell et al. (2019) Metabarcoding reveals a high diversity of woody host-associated Phytophthora spp.
in soils at public gardens and amenity woodlands in Britain. https://doi.org/10.7717/peerj.6931

Importantly, they used the same PCR primers, and therefore analysis with this tool’s default settings including the
provided database is appropriate.

The Quick Start described a simplified use of the THAPBI PICT tool to assess a single Illumina MiSeq sequencing run
using the thapbi_pict pipeline command, as a flowchart:

15
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Here we will run over the same process using real Phytophthora ITS1 data, calling the individual commands within
the default pipeline - and include metadata for reporting. We then run the equivalent all-in-one pipeline command.

Finally, since the sample data includes some positive controls, we can look at assessing the classifier performance.

4.1.1 Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest source code release (.tar.gz file).
You should find it contains a directory examples/woody_hosts/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis discussed.

The documentation goes through running each step of the analysis gradually, before finally calling pipeline command
to do it all together. We provide script run.sh to do the final run-though automatically (first without any metadata,
then again with it), but encourage you to follow along the individual steps first.

16 Chapter 4. Worked Examples
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FASTQ data

The raw data is from two Illumina MiSeq runs, a whole 96-well plate from 2016, and about half the samples from a
second 96-well plate sequenced in 2017 (where the rest of the plate was samples from a separate ITS1 study). There
are multiple replicates from each of 14 sample sites, plus controls. The raw FASTQ files are too large to include with
the THAPBI PICT source code.

Script setup.sh will download the raw FASTQ files for Riddell et al. (2019) from https://doi.org/10.5281/zenodo.
3342957

It will download 244 raw FASTQ files (122 pairs), about 215MB on disk

Amplicon primers & reference sequences

The ITS1 primers used here match the THAPBI PICT defaults, so the default database can also be used.

Metadata

The provided file metadata.tsv is an expanded version of Supplementary Table 1 from the original paper, adding a
column for the Illumina MiSeq sample names, rows for the controls.

The 16 columns are as follows, where 4 to 15 are in pairs for tree/shrub broad taxonomic grouping and health status
(H, healthy; D, symptoms/stump/dead):

1. Anonymised site number (with leading zero, “01” to “14”), or control name

2. Approximate altitude at centre

3. Underlying soil type

4. Healthy Cupressaceae

5. Diseased Cupressaceae

6. Healthy other conifers

7. Diseased other conifers

8. Healthy Ericaceae

9. Diseased Ericaceae

10. Healthy Fagaceae or Nothofagaceae

11. Diseased Fagaceae or Nothofagaceae

12. Healthy other angiosperms

13. Diseased other angiosperms

14. Healthy other

15. Diseased other

16. MiSeq Sample(s) (semi-colon separated list)

When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 16 -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

These settings are described in detail later (see Metadata). This example is important in that column 16 contains
multiple entries where a site had multiple sequenced samples (replicates).

4.1. Environmental Phytophthora ITS1 17
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Other files

Subdirectory expected/ contains four plain text tab-separated files, describing the expected species in some mock
community positive controls:

• DNA15MIX.known.tsv

• DNA10MIX_bycopynumber.known.tsv

• DNA10MIX_diluted25x.known.tsv

• DNA10MIX_undiluted.known.tsv

4.1.2 Preparing the sequence data

Running thapbi-pict prepare-reads

Calling thapbi-pict prepare-reads is the first action done by the top level thapbi_pict pipeline command.

$ thapbi_pict prepare-reads -h
...

Assuming you have the FASTQ files in raw_data/ as described above:

$ thapbi_pict prepare-reads -i raw_data/ -o intermediate/
...

For each input FASTQ file pair raw_data/<sample_name>_R1.fastq.gz and raw_data/<sample_name>_R2.
fastq.gz you should get a small FASTA file intermediate/<marker_name>/<sample_name>.fasta. In this
case, there are multiple replicates from each of 14 sample sites where the file name stem is Site_<N>_sample_<X>,
plus the controls.

$ ls -1 intermediate/ITS1/*.fasta | wc -l
122

Note this is robust to being interrupted and restarted (e.g. a job might time out on a cluster).

You should find 122 small FASTA files in the intermediate/ITS1/ folder

Note that four of these FASTA files are empty, Site_13_sample_7.fasta and Site_9_sample_4-3.fasta (noth-
ing above the minimum threshold), and both negative controls (good).

Warning: So far this example omits a key consideration - telling the tool which samples are negative controls,
and/or manually setting the minimum read abundance. See below.

18 Chapter 4. Worked Examples
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Intermediate FASTA files

What the prepare command does can be briefly summarised as follows:

• Merge the overlapping paired FASTQ reads into single sequences (pairs which do not overlap are discarded, for
example from unexpectedly long fragments, or not enough left after quality trimming).

• Primer trim (reads without both primers are discarded).

• Convert into a non-redundant FASTA file, with the sequence name recording the abundance (discarding se-
quences of low abundance).

• If synthetic controls are defined in the DB, look for matches using k-mers. These will be discounted when using
negative control samples to raise the minimum abundance threshold for the plate.

For each input <sample_name>_R1.fastq.gz and <sample_name>_R2.fastq.gz FASTQ pair we get a single much
smaller FASTA file <sample_name>.fasta.

Warning: The intermediate FASTA files can legitimately have no sequences which passed the thresholds. This
can happen when a PCR failed, and is expected to happen on blank negative controls.

Warning: The intermediate FASTA files start with an atypical header made up of lines starting #. Some tools
need this to be removed, but others will accept this as valid FASTA format.

For example, here the header tells us this sample started with 6136 reads in the paired FASTQ files, down to just 4180
after processing (with the final step being the abundance threshold).

$ head -n 12 intermediate/ITS1/Site_1_sample_1.fasta
#marker:ITS1
#left_primer:GAAGGTGAAGTCGTAACAAGG
#right_primer:GCARRGACTTTCGTCCCYRC
#threshold_pool:raw_data
#raw_fastq:6136
#flash:5900
#cutadapt:5886
#abundance:5194
#threshold:2
#singletons:692
>2e4f0ed53888ed39a2aee6d6d8e02206_2269
TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAACTTTCCACGTGAACTGTATCGAACAACTAGTTGG
GGGTCTTGTTTGGCGTGCGGCTGCTTCGGTAGCTGCTGCTAGGCGAGCCCTATCACGGCGAGCGTTTGGACTTCGGTCTG
AGCTAGTAGCTATTTTTTAAACCCATTCTTTAATACTGATTATACT

The sequence entries in the FASTA file are named <checksum>_<abundance>. Here <checksum> is the MD5 check-
sum of the sequence, and this is used as a unique shorthand. It is a 32 character string of the digits 0 to 9 and lower
cases letters a to f inclusive, like a559aa4d00a28f11b83012e762391259. These MD5 checksums are used later
in the pipeline, including in reports. The <abundance> is just an integer, the number of paired reads which after
processing had this unique sequence.

Any description entry in the FASTA records after the identifier is the name of the synthetic spike-in sequence in the
database that was matched to using k-mer counting (so 2e4f0ed53888ed39a2aee6d6d8e02206_2269 was not a
spike-in sequence).

The order of the FASTA sequences is in decreasing abundance, so the first sequence shown

4.1. Environmental Phytophthora ITS1 19
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2e4f0ed53888ed39a2aee6d6d8e02206_2269 is the most common, and so that read count 2269 also appears
in the headers as the maximum non-spike-in abundance (with no spike-in reads in this sample).

Note the sequence in the FASTA file is written as a single line in upper case. With standard FASTA line wrapping at
60 or 80 characters, the ITS1 sequences would need a few lines each. However, they are still short enough that having
them on one line without line breaks is no hardship - and it is extremely helpful for simple tasks like using grep to look
for a particular sequence fragment at the command line.

Note that for this documentation, the FASTA output has had the sequences line wrapped at 80 characters.

$ grep "^>" intermediate/ITS1/Site_1_sample_1.fasta | head -n 8
>2e4f0ed53888ed39a2aee6d6d8e02206_2269
>c1a720b2005f101a9858107545726123_715
>96e0e2f0475bd1617a4b05e778bb04c9_330
>fb30156d7f66c8abf91f9da230f4d19e_212
>dcd6316eb77be50ee344fbeca6e005c7_194
>972db44c016a166de86a2bacab3f4226_182
>d9bc3879fdab3b4184c04bfbb5cf6afb_165
>ed15fefb7a3655147115fc28a8d6d671_113

The final output has just eight unique sequences accepted, happily none of which match the synthetic controls. The
most common is listed first, and had MD5 checksum 2e4f0ed53888ed39a2aee6d6d8e02206 and was seen in 2269
reads.

You could easily find out which other samples had this unique sequence using the command line search tool grep as
follows:

$ grep 2e4f0ed53888ed39a2aee6d6d8e02206 intermediate/*.fasta
...

Or, since we deliberately record the sequences without line wrapping, you could use grep with the actual sequence
instead (which might spot some slightly longer entries as well).

You can also answer this example question from the read report produced later.

Abundance thresholds

As you might gather from reading the command line help, there are two settings to do with the minimum read abso-
lute abundance threshold, -a or --abundance (default 100), and -n or --negctrls for specifying negative controls
(default none).

(See also Abundance & Negative Controls which discusses the use of the fractional abundance threshold -f or
--abundance-fraction and how to set this dynamically with synthetic control samples with -y or --synthetic.)

If any negative controls are specified, those paired FASTQ files are processed first. If any of these contained ITS1
sequences above the specified minimum absolute abundance threshold (default 100), that higher number is used as the
minimum abundance threshold for the non-control samples. For example, say one control had several ITS1 sequences
with a maximum abundance of 124, and another control had a maximum ITS1 abundance of 217, while the remaining
controls had no ITS1 sequence above the default level. In that case, the tool would take maximum 217 as the abundance
threshold for the non-control samples.

If you wished to lower the threshold from the default to 50, you could use:

$ rm -rf intermediate/ITS1/*.fasta # Are you sure?
$ thapbi_pict prepare-reads -i raw_data/ -o intermediate/ -a 50
...
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Warning: By default thapbi_pict prepare-reads and thapbi_pict pipeline will reuse existing inter-
mediate FASTA files, so you must explicitly delete any old FASTA files before the new abundance threshold will
have any effect.

Warning: Setting the abundance threshold low (say under 50) risks background contamination coming through
into the results. Do not do this without strong justification (e.g. look at suitable controls over multiple plates from
your own laboratory procedure).

Warning: Setting the abundance threshold very low (under 10) has the additional problem that the number of
unique sequences accepted will increase many times over. This will dramatically slow down the rest of the analysis.
This is only advised for investigating single samples.

For the woody host data, each plate had a negative control sample which should contain no ITS1 sequences. We can
specify the negative controls with -n or --negctrls by entering the four FASTQ filenames in full, but since they have
a common prefix we can use a simple wildcard:

$ thapbi_pict prepare-reads -i raw_data/ -o intermediate/ -n raw_data/NEGATIVE*.fastq.gz
...

For this sample data, happily neither of the negative controls have any ITS1 present above the default threshold, so this
would have no effect.

For the THAPBI Phyto-Threats project we now run each 96-well PCR plate with multiple negative controls. Rather than
a simple blank, these include a known mixture of synthetic sequences of the same length, same nucelotide composition,
and also same di-nucleotide composition as real Phytophthora ITS1. This means we might have say 90 biological
samples which should contain ITS1 but not the synthetics controls, and 6 negative controls which should contain
synthetic controls but not ITS1.

We therefore run thapbi_pict prepare-reads separately for each plate, where any ITS1 contamination in the syn-
thetic controls is used to set a plate specific minimum abundance. This means we cannot run thapbi_pict pipeline
on multiple plates at once (although we could run it on each plate, we generally want to produce reports over multiple
plates).

4.1.3 Classifying sequences

Running thapbi-pict classify

The second stage of the pipeline is to merge all the sample specific FASTA files into one non-redundant sequence vs
sample TSV file, ready to classify all the unique sequences in it. These steps can be run separately:

$ thapbi_pict sample-tally -h
...
$ thapbi_pict classify -h
...

There are a number of options here, but for the purpose of this worked example we will stick with the defaults and tell
it to look for FASTA files in the intermediate/ directory.
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$ thapbi_pict sample-tally -i intermediate/ITS1/*.fasta -o summary/thapbi-pict.ITS1.
→˓tally.tsv
...
$ thapbi_pict classify -i summary/thapbi-pict.ITS1.tally.tsv
...

Here we have not set the output folder with -o or --output, which means the classify step will default to writing the
classifier TSV output file next to the input tally TSV file. There should now be two new files:

$ ls -1 summary/thapbi-pict.ITS1.*.tsv
summary/thapbi-pict.ITS1.onebp.tsv
summary/thapbi-pict.ITS1.tally.tsv

If you have the biom-format Python library installed, adding --biom to the command line will result in a summary/
thapbi-pict.ITS1.onebp.biom file as well, equivalent to the data in summary/thapbi-pict.ITS1.tally.tsv
but potentially more useful for export to other analysis tools.

Intermediate TSV files

For each input tally TSV file <name>.tally.tsv another plain text TSV file is generated named <name>.<method>.
tsv where the default method is onebp (which looks for perfect matches or up to one base pair different). These are
both sequence versus sample observation tables of counts, but with sample metadata in header lines (starting with #)
and additional columns for the amplicon marker sequence, and for the classifier output also the NCBI taxid(s), and
genus-species of any classification(s).

These files are not really intended for human use, but are readable. Here we skip ten lines of sample metadata at the
start, and all the sample-specific counts in columns 2 to 123, and the sequence in column 124, showing just the first
and final two columns:

$ tail -n +10 summary/thapbi-pict.ITS1.onebp.tsv | head | cut -f 1,125,126
<SEE TABLE BELOW>

Viewing it like this is not ideal, although there are command line tools which help. You could instead open the file in
R, Excel, etc:

#Marker/MD5_abundance taxid genus-species
ITS1/2e4f0ed53888ed39a2aee6d6d8e02206_163094221518 Phytophthora pseudosyringae
ITS1/d9bc3879fdab3b4184c04bfbb5cf6afb_83653631361 Phytophthora austrocedri
ITS1/32159de6cbb6df37d084e31c37c30e7b_2897667594 Phytophthora syringae
ITS1/ed15fefb7a3655147115fc28a8d6d671_2878678237 Phytophthora gonapodyides
ITS1/972db44c016a166de86a2bacab3f4226_285152056922 Phytophthora x cambivora
ITS1/c1a720b2005f101a9858107545726123_2040078237 Phytophthora gonapodyides
ITS1/96e0e2f0475bd1617a4b05e778bb04c9_1739278237 Phytophthora gonapodyides
ITS1/f27df8e8755049e831b1ea4521ad6eb3_163692496075;2897317;29920Phytophthora aleatoria;Phytophthora

alpina;Phytophthora cactorum
ITS1/21d6308d89d74b8ed493d73a2cb4adb5_161692056922 Phytophthora x cambivora

The first entry says the most abundance sequence with MD5 checksum 2e4f0ed53888ed39a2aee6d6d8e02206 was
seen in a total of 163094 reads, and was classified as Phytophthora pseudosyringae (NCBI taxid 221518). Another
common sequence has been matched to two closely related species Phytophthora cambivora (NCBI taxid 53983) and
Phytophthora x cambivora (NCBI taxid 2056922).
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If you are familiar with the command line search tool grep and the regular expression syntax, you should find the
format of these intermediate TSV files lends itself to some simple searches. For example, you could see which samples
had matches to Phytophthora rubi using grep as follows:

$ grep "Phytophthora rubi" summary/thapbi-pict.ITS1.onebp.tsv | cut -f 1,125,126
ITS1/d8613e80b8803b13f7ea5d097f8fe46f_899 129364 Phytophthora rubi
$ grep d8613e80b8803b13f7ea5d097f8fe46f intermediate/ITS1/*.fasta
intermediate/ITS1/DNA10MIX_bycopynumber.fasta:>d8613e80b8803b13f7ea5d097f8fe46f_279
intermediate/ITS1/DNA10MIX_diluted25x.fasta:>d8613e80b8803b13f7ea5d097f8fe46f_349
intermediate/ITS1/DNA10MIX_undiluted.fasta:>d8613e80b8803b13f7ea5d097f8fe46f_271

The summary reports would also answer this particular question, but this kind of search can be useful for exploring
specific questions.

4.1.4 Metadata

The Quick Start introduced the typical pipeline taking paired FASTQ files though to reports, and mentioned the idea
of enhancing the reports with sample metadata.

In the following we will show the reports with and without metadata. As described earlier (see Marker data),
metadata.tsv is a table of metadata based on table S1 in the paper, with 16 columns.
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We will use -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 (or --metacols) meaning show columns 1 to 15 inclu-
sive in the reports (in that order).

Finally, we will use -x 16 or --metaindex 16 to indicate column 16 contains cross references to the sequenced
sample filename stems (semi-colon separated). They will be shown in this order.

This cross referencing idea is key to getting the best results from attaching metadata to your sequenced samples. Here
is an abridged representation of the table, showing column one (site or control name), column two (altitude), and finally
column 16 which has the filename stems of the sequence data belonging to this row of the table (semi-colon separated
list).

#Site Al-
ti-
tude

. . . MiSeq Sample(s)

01 30 . . . Site_1_sample_1; Site_1_sample_2; Site_1_sample_3; Site_1_sample_4; Site_1_sample_5;
Site_1_sample_6; Site_1_sample_7; Site_1_sample_8; Site_1_sample_9-2;
Site_1_sample_10

02 55 . . . Site_2_sample_1; Site_2_sample_2; Site_2_sample_3; Site_2_sample_4; Site_2_sample_5;
Site_2_sample_6; Site_2_sample_7; Site_2_sample_8; Site_2_sample_9; Site_2_sample_10

03 45 . . . Site_3_sample_1; Site_3_sample_2; Site_3_sample_4; Site_3_sample_7; Site_3_sample_8;
Site_3_sample_9

04 20 . . . Site_4_sample_1; Site_4_sample_2; Site_4_sample_3; Site_4_sample_3-2;
Site_4_sample_4; Site_4_sample_5; Site_4_sample_6; Site_4_sample_8; Site_4_sample_9;
Site_4_sample_10

05 100 . . . Site_5_sample_1; Site_5_sample_2; Site_5_sample_4; Site_5_sample_5; Site_5_sample_6;
Site_5_sample_8; Site_5_sample_9

06 5 . . . Site_6_sample_1; Site_6_sample_2-2; Site_6_sample_3-1; Site_6_sample_4;
Site_6_sample_5-3; Site_6_sample_6; Site_6_sample_7-1; Site_6_sample_8-2;
Site_6_sample_9; Site_6_sample_10

07 105 . . . Site_7_sample_1; Site_7_sample_2; Site_7_sample_3; Site_7_sample_5; Site_7_sample_6;
Site_7_sample_7; Site_7_sample_8; Site_7_sample_9; Site_7_sample_10

08 45 . . . Site_8_sample_1; Site_8_sample_2; Site_8_sample_3; Site_8_sample_4; Site_8_sample_5-
2; Site_8_sample_6; Site_8_sample_7; Site_8_sample_7-2; Site_8_sample_8;
Site_8_sample_9

09 15 . . . Site_9_sample_1; Site_9_sample_4-3; Site_9_sample_6; Site_9_sample_7;
Site_9_sample_8; Site_9_sample_9; Site_9_sample_10

10 30 . . . Site_10_sample_7; Site_10_sample_8
11 80 . . . Site_11_sample_1; Site_11_sample_2; Site_11_sample_3; Site_11_sample_4;

Site_11_sample_5; Site_11_sample_6; Site_11_sample_7; Site_11_sample_8;
Site_11_sample_9; Site_11_sample_10

12 30 . . . Site_12_sample_1; Site_12_sample_2; Site_12_sample_3-3; Site_12_sample_4;
Site_12_sample_5-3; Site_12_sample_6; Site_12_sample_8; Site_12_sample_9;
Site_12_sample_10

13 300 . . . Site_13_sample_1; Site_13_sample_2; Site_13_sample_4; Site_13_sample_5;
Site_13_sample_6; Site_13_sample_7; Site_13_sample_8; Site_13_sample_9;
Site_13_sample_10

14 30 . . . Site_14_sample_1-2; Site_14_sample_2; Site_14_sample_3; Site_14_sample_4;
Site_14_sample_5; Site_14_sample_6; Site_14_sample_10

DNA10MIX . . . DNA10MIX_undiluted; DNA10MIX_diluted25x; DNA10MIX_bycopynumber
DNA16MIX . . . DNA16MIX
NEG-
A-
TIVE

. . . NEGATIVE_firstplate; NEGATIVE_secondplate
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Also note that in column one we have listed the numerical site names with leading zeros giving 01 to 14 to ensure they
sort as expected.

4.1.5 Summary reports

Running thapbi_pict summary

The reports from the pipeline can be generated separately by the thapbi_pict summary command:

$ thapbi_pict summary -h
...

To mimic what the pipeline command would do, run the following:

$ thapbi_pict summary -i intermediate/ \
summary/thapbi-pict.ITS1.onebp.tsv \
-o summary/thapbi-pict.ITS1

...

Note the trailing slash \ at the end of the first line indicates the command continues on the next line. You can actually
type this at the standard Linux command prompt (or include it in a copy and paste), or just enter this as one very long
command.

We will look at the output in a moment, along side the equivalent reports generated with metadata (see linked discussion
about column numbers):

$ thapbi_pict summary -i intermediate/ \
summary/thapbi-pict.ITS1.onebp.tsv \
-o summary/with-metadata.ITS1 \
-t metadata.tsv -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 -x 16

...

Both the read report and sample report are tables, produced as both computer-friendly plain text tab-separated variable
(TSV), and human-friendly Excel (with colors and conditional formatting).

Read Report

The heart of the read report is a large table, of unique sequences (ASVs rows) versus sequenced samples (columns),
with read abundance counts. There are additional columns with sequence information, and when Metadata is present,
extra rows at the start with sample information.

This read report has a row for each unique sequence. The first columns are the marker name (here always “ITS1”), the
unique sequence MD5 checksum, any species prediction, the sequence itself, the number of samples it was detected
in above the threshold, the maximum number of reads with this sequence in any one sample, and the total number of
reads (from samples where it was above the threshold). Then the main columns (one per sample) list the abundance of
each unique sequence in that sample (if above the threshold).

In the Excel version, conditional formatting is used to highlight the non-zero counts with a red background. Further-
more, with metadata it will attempt to assign repeated bands of background color to groups (pink, orange, yellow, green,
blue). In this example, each sample site gets a new color:
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Typical sample naming schemes will result in replicates as neighbouring columns - meaning you should see very
similar patterns of red (non-zero). Certainly in this dataset scanning horizontally we do see some sequences clearly
show presence/absence patterns consistent with the samples.

The default row sorting will result in a dominant sequence being followed by any close variants assigned to the same
species. Many of these rows will represent PCR artefacts found in just one or two samples. This contributes to the
“halo” effect seen in the Edit Graph representation, discussed next.

Sample Report

The heart of the sample report is a table of samples (rows) versus species predictions (columns), with read abundance
counts. There are additional columns with sample read counts, and when Metadata is present, extra columns at the
start with sample information.

Here is a screenshot of the summary/with-metadata.ITS1.samples.onebp.xlsx file opened in Excel:
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The metadata is in the first columns, then the sequence filename stem, a text summary of the species predictions, some
inferred sequence count data, and the one column for each unique species or ambiguous species combinations.

Using the metadata each site has one or more rows in the same background color (pink, orange, yellow, green, blue,
repeated), with one row for each time it was sequenced (the per-site sampling).

The values are total read counts for that row/column, with conditional formatting applied so non-zero entries have a
bright red background.

For example, the final rows are the two DNA mixture controls (blue and pink) and the negative controls (orange). These
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have almost no metadata, and the negative controls read counts are all zero.

The plain text table with-metadata.ITS1.samples.onebp.xlsx is the same, but without the colors and formatting.
The files generated without metadata (thapbi-pict.ITS1.samples.onebp.xlsx etc) lack the extra columns and
the background color bands.

The files without metadata start with the FASTQ filename stem as the inferred sample name in column 1:

$ cut -f 1 summary/thapbi-pict.ITS1.samples.onebp.tsv | head
#Sequencing sample
DNA10MIX_bycopynumber
DNA10MIX_diluted25x
DNA10MIX_undiluted
DNA15MIX
NEGATIVE_firstplate
NEGATIVE_secondplate
Site_10_sample_7
Site_10_sample_8
Site_11_sample_1

In contrast, the 15 extra metadata columns are inserted before this, and are used to sort the samples:

$ cut -f 1,16 summary/with-metadata.ITS1.samples.onebp.tsv | head
#Site Sequencing sample
01 Site_1_sample_1
01 Site_1_sample_2
01 Site_1_sample_3
01 Site_1_sample_4
01 Site_1_sample_5
01 Site_1_sample_6
01 Site_1_sample_7
01 Site_1_sample_8
01 Site_1_sample_9-2

Like the FASTQ filename stems, the metadata is still sorted as strings, but by using leading zeros and YYYY-MM-DD
style for any dates, you can achieve a logical presentation.

After the sequencing sample name (the FASTQ filename stem), we have the classification summary as a comma sep-
arated list - attempting to summarise the later per-species columns. Species listed here with (*) are where sequences
matched multiple species equally well. For example, Phytophthora andina, P. infestans, and P. ipomoeae, share an
identical ITS1 marker.

The next columns are derived from the data itself, reads counts in the samples as raw FASTQ, after read merging
with Flash, primer trimming with Cutadapt, information about the abundance thresholds used (omitted below), the
maximum ASV read count for non-spike-in or spike-in sequences, number of singletons, total number of reads for the
accepted ASVs (i.e. passing the abundance threshold), and the number of unique ASVs accepted. It may be easier to
look at this in Excel, but at the command line:

$ cut -f 16,18-20,24-28 summary/with-metadata.ITS1.samples.onebp.tsv | head
<SEE TABLE BELOW>

As a table:
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Sequencing
sample

Raw
FASTQ

Flash Cu-
tadapt

Max non-
spike

Max
spike-in

Single-
tons

Ac-
cepted

Unique

Site_1_sample_1 6136 5900 5886 2269 0 692 4180 8
Site_1_sample_2 6135 5955 5947 2532 0 671 4548 8
Site_1_sample_3 6778 6484 6470 2146 0 579 5060 5
Site_1_sample_4 4145 3984 3974 1499 0 469 2852 7
Site_1_sample_5 4722 4232 4213 3130 0 433 3130 1
Site_1_sample_6 12633 12070 12034 5864 0 1217 9208 4
Site_1_sample_7 7560 7170 7141 3372 0 741 5402 5
Site_1_sample_8 6324 5956 5942 2037 0 630 4524 5
Site_1_sample_9-
2

4542 4335 4331 2780 0 385 3436 2

Finally, we get to the main part of the sample table, one column per classifier result, with the number of reads. Picking
out some examples:

$ cut -f 16,31,41,64 summary/with-metadata.ITS1.samples.onebp.tsv | head
<SEE TABLE BELOW>

As a table:

Sequencing sample Phytophthora austrocedri Phytophthora gonapodyides Unknown
Site_1_sample_1 165 1158 0
Site_1_sample_2 445 718 101
Site_1_sample_3 0 1110 1313
Site_1_sample_4 204 861 0
Site_1_sample_5 0 3130 0
Site_1_sample_6 0 0 0
Site_1_sample_7 0 902 161
Site_1_sample_8 0 1863 116
Site_1_sample_9-2 0 0 656

Generally we hope to see single species predictions for each ASV, however when there are conflicts such as equally
good matches, or a reference sequence that is shared between species, both are reported. For example:

$ cut -f 16,35 summary/with-metadata.ITS1.samples.onebp.tsv | head
<SEE TABLE BELOW>

As a table:

Sequencing sample Phytophthora chlamydospora;Phytophthora x stagnum
Site_1_sample_1 0
Site_1_sample_2 0
Site_1_sample_3 0
Site_1_sample_4 0
Site_1_sample_5 0
Site_1_sample_6 1217
Site_1_sample_7 0
Site_1_sample_8 0
Site_1_sample_9-2 0
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In this example, Site_1_sample_6 had sequences matching both Phytophthora chlamydospora and Phytophthora x
stagnum. These species are listed with a (*) suffix in the earlier classification summary column:

$ grep Site_1_sample_6 summary/with-metadata.ITS1.samples.onebp.tsv | cut -f 16,17
Site_1_sample_6 Phytophthora castanetorum, Phytophthora chlamydospora(*), Phytophthora␣
→˓pseudosyringae, Phytophthora syringae, Phytophthora x stagnum(*)

4.1.6 Edit Graph

Running thapbi_pict edit-graph

This is not run as part of the pipeline command, but must be run separately:

$ thapbi_pict edit-graph -h
...

This command does not use metadata, but can optionally use the intermediate TSV files. It requires the sample tally
file:

$ thapbi_pict edit-graph -i summary/thapbi-pict.ITS1.tally.tsv \
-o summary/thapbi-pict.edit-graph.onebp.xgmml

...

This will generate an XGMML (eXtensible Graph Markup and Modeling Language) file by default, but you can also
request other formats including PDF (which requires additional dependencies including GraphViz):

$ thapbi_pict edit-graph -i summary/thapbi-pict.ITS1.tally.tsv \
-o summary/thapbi-pict.edit-graph.onebp.pdf -f pdf

...

Nodes and edges

In this context, we are talking about a graph in the mathematical sense of nodes connected by edges. Our nodes are
unique sequences (which we can again label by the MD5 checksum), and the edges are how similar two sequences
are. Specially, we are using the Levenshtein edit distance. This means an edit distance of one could be a single base
substitution, insertion or deletion.

The tool starts by compiling a list of all the unique sequences in your samples (i.e. all the rows in the thapbi_pict
read-summary report), and optionally all the unique sequences in the database. It then computes the edit distance
between them all (this can get slow).

We build the network graph by adding edges for edits of up to three base pairs (by default). This gives small connected
components or sub-graphs which are roughly at the species level.

Redundant edges are dropped, for example if A is one edit away from B, and B is one edit away from C, there is need
to draw the two edit line from A to C.

We draw the nodes as circles, scaled by the number of samples that unique sequence appeared in. If that exact sequence
is in the database, is it colored according to genus, defaulting to grey.
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Color RGB value Meaning
Red FF0000 Phytophthora
Lime 00FF00 Peronospora
Blue 0000FF Hyaloperonospora
Yellow FFFF00 Bremia
Cyan 00FFFF Pseudoperonospora
Magenta FF00FF Plasmopara
Maroon 800000 Nothophytophthora
Olive 808000 Peronosclerospora
Green 008000 Perofascia
Purple 800080 Paraperonospora
Teal 008080 Protobremia
Dark red 8B0000 Other known genus
Dark orange FF8C00 Conflicting genus
Orange FFA500 Synthetic sequence
Grey 808080 Not in the database

The edges are all grey, solid for a one base pair edit distance, dashed for a two base pair edit distance, and dotted for a
three base pair edit distance.

Viewing the PDF

You should be able to open the PDF file easily, and get something like this - lots of red circles for Phytophthora, some
grey circles for sequences not in the database, and plenty of grey straight line edges between them.
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In the PDF (and XGMML) output, nodes are coloured by genus (red for Phytophthora), but only labelled if in the
database at species level.

The edges are solid for a one base pair edit distance, dashed for a two base pair edit distance, and dotted for a three base
pair edit distance. All grey.

Viewing the XGMML

You should be able to open the PDF file easily, and while it is interesting it is read only and non-interactive. This is
where the XGMML output shines. You will need to install the free open source tool Cytoscape to use this.

Open Cytoscape, and from the top level menu select File, Import, Network from file..., then select summary/
thapbi-pict.edit-graph.onebp.xgmml (the XGMML file created above).

You should get something like this, where initially all the nodes are drawn on top of each other:
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From the top level menu select “Layout”, “Perfuse Force Directed Layout”, “Edit-distance-weight”, and you should
then see something prettier - if you zoom in you should see something like this:

This time you can interact with the graph, moving nodes about with the mouse, try different layouts, view and search
the attributes of the nodes and edges.
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Here the nodes are labelled with the species if they were in the database at species level, or otherwise as the start of the
MD5 checksum in curly brackets (so that they sort nicely). The default node colors are as in the PDF output, likewise
the grey edge styles.

The node attributes include the full MD5 (so you can lookup the full sequence or classification results for any node
of interest), sample count, total read abundance (both numbers shown in the thapbi_pict summary reports), genus
(allowing you to do your own color scheme), and species if known.

The edge attributes include Edit-distance (values 1, 2, 3 for number of base pairs difference between sequences)
and matching Edit-distance-weight (values 3, 2, 1 used earlier for the layout where we prioritise the small edit
distance edges).

Halo effect

In this final screenshot we have zoomed in and selected all 11 nodes in the connected component centered on P. pseu-
dosyringae (Cytoscape highlights selected nodes in yellow):

The node table view is automatically filtered to show just these nodes, and we can see that all the grey nodes appeared
in only one sample each - with the P. pseudosyringae entry in the database in 66 samples, while the one base away P.
ilics sequence was in 6 samples.

This kind of grey-node halo around highly abundance sequences is more common when plotting larger datasets. It is
consistent with PCR artefacts occurring in just one (or two) samples giving rise to (almost) unique sequences based on
the template sequence.
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4.1.7 Pipeline with metadata

Running thapbi-pict pipeline

Having run all the steps of the typical pipeline individually, we now return to the top level thapbi_pict pipeline
command:

$ thapbi_pict pipeline -h
...

Assuming you have the FASTQ files in raw_data/, we can run the pipeline command as follows, and should get
multiple output report files:

$ thapbi_pict pipeline -i raw_data/ -s intermediate/ \
-o summary/thapbi-pict

...
$ ls -1 summary/thapbi-pict.*
summary/thapbi-pict.ITS1.onebp.tsv
summary/thapbi-pict.ITS1.reads.onebp.tsv
summary/thapbi-pict.ITS1.reads.onebp.xlsx
summary/thapbi-pict.ITS1.samples.onebp.tsv
summary/thapbi-pict.ITS1.samples.onebp.xlsx
summary/thapbi-pict.ITS1.tally.tsv
summary/thapbi-pict.edit-graph.onebp.pdf
summary/thapbi-pict.edit-graph.onebp.xgmml

As described for the prepare-reads step we should also specify which of the samples are negative controls, which may
be used to increase the plate level minimum abundance threshold:

$ thapbi_pict pipeline -i raw_data/ -s intermediate/ \
-o summary/thapbi-pict -n raw_data/NEGATIVE*.fastq.gz

...

And, as described for the summary reports, we can provide metadata:

$ thapbi_pict pipeline -i raw_data/ -s intermediate/ \
-o summary/with-metadata -n raw_data/NEGATIVE*.fastq.gz \
-t metadata.tsv -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 -x 16

...

Finally, as we will review next, we can ask the pipeline to assess the results against any expected sample species
classifications:

$ thapbi_pict pipeline -i raw_data/ expected/ -s intermediate/ \
-o summary/with-metadata -n raw_data/NEGATIVE*.fastq.gz \
-t metadata.tsv -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 -x 16

...
$ ls -1 summary/with-metadata.*
summary/with-metadata.ITS1.onebp.tsv
summary/with-metadata.ITS1.assess.confusion.onebp.tsv
summary/with-metadata.ITS1.assess.onebp.tsv
summary/with-metadata.ITS1.assess.tally.onebp.tsv
summary/with-metadata.ITS1.reads.onebp.tsv
summary/with-metadata.ITS1.reads.onebp.xlsx

(continues on next page)
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(continued from previous page)

summary/with-metadata.ITS1.samples.onebp.tsv
summary/with-metadata.ITS1.samples.onebp.xlsx
summary/with-metadata.ITS1.tally.tsv

Here we also used -o (or --output) to specify a different stem for the report filenames.

Conclusions

For the THAPBI Phyto-Threats project our datasets span multiple plates, but we want to set plate-specific minimum
abundance thresholds. That is taken care of as long as each plate is in its own directory. For example, you might have
raw_data/plate_NNN/*.fastq.gz and run the pipeline with -i raw_data/).

However, while you could run the pipeline command on all the data in one go, with access to a computer cluster it will
likely be faster to run at least the (slowest) prepare-reads stage on separate cluster nodes (e.g. one cluster job for
each plate).

4.1.8 Assessing the classifier

This sample dataset includes two positive control mock communities. We know the species which went into the two
different DNA mixes used, so for each sequenced positive control sample we can compare the expected list of species
with the predicted list of species, and thus count true positives, false positives, false negatives, etc.

We will first do this by hand, and then explore the tool’s own built in assessment framework.

Counting species for one sample by hand

The woody hosts dataset had two positive control mixes. From the first plate, a set of 15 Phytophthora species (listed
here alphabetically):

• Phytophthora austrocedri

• Phytophthora boehmeriae

• Phytophthora cactorum

• Phytophthora cambivora (now Phytophthora x cambivora)

• Phytophthora chlamydospora

• Phytophthora cinnamomi

• Phytophthora gonapodyides

• Phytophthora ilicis

• Phytophthora kernoviae

• Phytophthora lateralis

• Phytophthora obscura

• Phytophthora plurivora

• Phytophthora pseudosyringae

• Phytophthora ramorum

• Phytophthora syringae
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Quoting from the sample summary report, using the default settings for classification of DNA15MIX, we got:

$ grep DNA15MIX summary/thapbi-pict.ITS1.samples.onebp.tsv | cut -f 2
Phytophthora aleatoria(*), Phytophthora alpina(*), Phytophthora austrocedri,␣
→˓Phytophthora cactorum(*), Phytophthora gonapodyides, Phytophthora ilicis, Phytophthora␣
→˓kernoviae, Phytophthora obscura, Phytophthora pseudosyringae, Phytophthora ramorum

Or, as a list:

• Phytophthora aleatoria (uncertain/ambiguous)

• Phytophthora alpina (uncertain/ambiguous)

• Phytophthora austrocedri

• Phytophthora cactorum (uncertain/ambiguous)

• Phytophthora gonapodyides

• Phytophthora ilicis

• Phytophthora kernoviae

• Phytophthora obscura

• Phytophthora pseudosyringae

• Phytophthora ramorum

The good news is that eight are correct classifications (eight true positives, 8 TP), but two false positives (2 FP). Those
false positives Phytophthora alpina and P. aleatoria are indistinguishable from P. cactorum, a problem flagged via the
conflicts command:

$ thapbi_pict conflicts | grep cactorum
f27df8e8755049e831b1ea4521ad6eb3 species Phytophthora aleatoria;Phytophthora alpina;
→˓Phytophthora cactorum
$ grep f27df8e8755049e831b1ea4521ad6eb3 intermediate/ITS1/DNA15MIX.fasta
>f27df8e8755049e831b1ea4521ad6eb3_981

The bad news is we are missing seven expected species (seven false negatives, 7 FN):

• Phytophthora boehmeriae

• Phytophthora chlamydospora

• Phytophthora cinnamomi

• Phytophthora lateralis

• Phytophthora plurivora

• Phytophthora syringae

• Phytophthora x cambivora

We will return to interpretation after showing how to get the tool to compute these FP, FP and FN values.

The positive controls from the second plate had a different mix of ten Phytophthora species, again listed alphabetically:

• Phytophthora boehmeriae

• Phytophthora cactorum

• Phytophthora capsici

• Phytophthora castaneae
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• Phytophthora fallax

• Phytophthora foliorum

• Phytophthora obscura

• Phytophthora plurivora

• Phytophthora rubi

• Phytophthora siskiyouensis

Again referring to the sample summary report from running with default settings, for DNA10MIX_undiluted and
DNA10MIX_diluted25x we got:

• Phytophthora agathidicida (uncertain/ambiguous)

• Phytophthora capsici

• Phytophthora castaneae (uncertain/ambiguous)

• Phytophthora fallax

• Phytophthora foliorum

• Phytophthora gloveri (uncertain/ambiguous)

• Phytophthora obscura

• Phytophthora plurivora

• Phytophthora rubi

• Phytophthora siskiyouensis

Plus the results from DNA10MIX_bycopynumber were almost the same - but this time there wasn’t a sequence only
matched to P. capsici, so that was also flagged as “(uncertain/ambiguous)”.

Leaving aside the ambiguous qualifier, there are ten species predictions, but only nine are correct (9 TP: P. capsici, P.
castaneae, P. fallax, P. foliorum, P. obscura, P. plurivora, P. rubi, P. siskiyouensis), with two wrong guesses (2 FP: P.
agathidicida and P. gloveri), and two missing predictions (2 FN: P. boehmeriae and P. cactorum).

The uncertain/ambiguous prediction of Phytophthora agathidicida is easily explained, it comes from a sequence present
in all three samples with MD5 checksum 5122dde24762f8e3d6a54e3f79077254, and this exact sequence is in the
database with entries for both Phytophthora castaneae (which was in the DNA control mixture) and also Phytophthora
agathidicida (e.g. accession KP295308).

You can confirm this by looking at the sample tally TSV files, e.g. using grep to find the unique sequence matched to
this species, and the sample counts for that sequence:

$ grep "Phytophthora agathidicida" summary/thapbi-pict.ITS1.onebp.tsv | cut -f 1,125,126
ITS1/29de890989becddc5e0b10ecbbc11b1a_1524 1642459;1642465 Phytophthora agathidicida;
→˓Phytophthora castaneae
$ grep -E "(Sequence|29de890989becddc5e0b10ecbbc11b1a)" \
summary/thapbi-pict.ITS1.tally.tsv | cut -f 2-5

DNA10MIX_bycopynumber DNA10MIX_diluted25x DNA10MIX_undiluted DNA15MIX
245 655 624 0
$ thapbi_pict conflicts | grep 29de890989becddc5e0b10ecbbc11b1a
29de890989becddc5e0b10ecbbc11b1a species Phytophthora agathidicida;Phytophthora␣
→˓castaneae

The same applies to Phytophthora capsici and Phytophthora gloveri. i.e. These false positives are unavoidable.

As noted above, the woody hosts paper concluded the failure to detect P. boehmeriae in either DNA mix was due to
inefficient primer annealing in a species mixture. We have an unexpected FN for P. cactorum though.

38 Chapter 4. Worked Examples



THAPBI PICT, Release 1.0.13

Running thapbi_pict assess for one sample

Comparing a few samples like this by hand is one thing, but doing it at scale requires automation. For assessing
changes to the classifier method and database, we mainly run thapbi_pict assess against a set of single isolate
positive controls. This requires a computer readable files listing the expected species in a particular format.

$ thapbi_pict assess -h
...

The “known” file uses the same column based layout as the intermediate TSV files, but while you can provide the
expected species for each unique sequence in the sample, this can be simplified to a single wildcard * line followed by
all the NCBI taxids (optional), and species names using semi-colon separators.

The simplest way to run the assess command is to tell it two TSV input filenames, named <sample_name>.known.tsv
(the expected results) and <sample_name>.<method>.tsv (from running thapbi_pict classify` on <sample_name>.
fasta). However, although early versions of the pipeline did this, it has for a long time combined the samples for
classification - partly for speed.

Instead we typically pass the assess command the sample-tally TSV file listing how many of each unique sequence were
found in each sample, the classifier TSV listing the species assigned to each sequence, and one or more per-sample
<sample_name>.known.tsv expected results files.

The assess command will default to printing its tabular output to screen - shown here abridged after piping through the
cut command to pull out just the first five columns from the 15 species mix:

$ thapbi_pict assess -i summary/thapbi-pict.ITS1.onebp.tsv \
expected/DNA15MIX.known.tsv | cut -f 1-5

Assessed onebp vs known in 2 files (260 species; 1 samples)
#Species TP FP FN TN
OVERALL 8 2 7 243
Phytophthora aleatoria 0 1 0 0
Phytophthora alpina 0 1 0 0
Phytophthora austrocedri 1 0 0 0
Phytophthora boehmeriae 0 0 1 0
Phytophthora cactorum 1 0 0 0
Phytophthora chlamydospora 0 0 1 0
Phytophthora cinnamomi 0 0 1 0
Phytophthora gonapodyides 1 0 0 0
Phytophthora ilicis 1 0 0 0
Phytophthora kernoviae 1 0 0 0
Phytophthora lateralis 0 0 1 0
Phytophthora obscura 1 0 0 0
Phytophthora plurivora 0 0 1 0
Phytophthora pseudosyringae 1 0 0 0
Phytophthora ramorum 1 0 0 0
Phytophthora syringae 0 0 1 0
Phytophthora x cambivora 0 0 1 0
OTHER 243 SPECIES IN DB 0 0 0 243

More usually, you would output to a named file, and look at that:

$ thapbi_pict assess -i summary/thapbi-pict.ITS1.onebp.tsv \
expected/DNA15MIX.known.tsv -o DNA15MIX.assess.tsv

Assessed onebp vs known in 2 files (260 species; 1 samples)
$ cut -f 1-5,9,11 DNA15MIX.assess.tsv
<SEE TABLE BELOW>
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You should be able to open this DNA15MIX.assess.tsv file in R, Excel, etc, and focus on the same column selection:

#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 8 2 7 243 0.64 0.529
Phytophthora aleatoria 0 1 0 0 0.00 1.000
Phytophthora alpina 0 1 0 0 0.00 1.000
Phytophthora austrocedri 1 0 0 0 1.00 0.000
Phytophthora boehmeriae 0 0 1 0 0.00 1.000
Phytophthora cactorum 1 0 0 0 1.00 0.000
Phytophthora chlamydospora 0 0 1 0 0.00 1.000
Phytophthora cinnamomi 0 0 1 0 0.00 1.000
Phytophthora gonapodyides 1 0 0 0 1.00 0.000
Phytophthora ilicis 1 0 0 0 1.00 0.000
Phytophthora kernoviae 1 0 0 0 1.00 0.000
Phytophthora lateralis 0 0 1 0 0.00 1.000
Phytophthora obscura 1 0 0 0 1.00 0.000
Phytophthora plurivora 0 0 1 0 0.00 1.000
Phytophthora pseudosyringae 1 0 0 0 1.00 0.000
Phytophthora ramorum 1 0 0 0 1.00 0.000
Phytophthora syringae 0 0 1 0 0.00 1.000
Phytophthora x cambivora 0 0 1 0 0.00 1.000
OTHER 243 SPECIES IN DB 0 0 0 243 0.00 0.000

The OVERALL line tells us that there were 8 true positives, 2 false positives, 7 false negatives, and 226 true negatives.
The final number needs a little explanation. First, 8+2+7+226 = 243, which is the number of species in the database.
With only one sample being considered, 226 is the number of other species in the database which the tool correctly
says are not present.

Following this we get one line per species, considering this species in isolation (making this a traditional and simpler
to interpret classification problem). Here there is only one sample, so this time TP+FP+FN+TN=1.

You can easily spot the 2 FP in this layout, Phytophthora alpina and P. aleatoria, or the 7 FN.

The additional columns (not all shown here) include traditional metrics like sensitivity, specificity, precision, F1, and
Hamming loss. We’ve shown F1 or F-measure here (from zero to one for perfect recall), plus our own metric provi-
sionally called Ad hoc loss which is a modification of the Hamming loss without using the true negative count (which
we expect to always be very large as the database will contain many species, while a community might contain only
ten).

Doing that for one of the 10 species mixtures:

$ thapbi_pict assess -i summary/thapbi-pict.ITS1.onebp.tsv \
expected/DNA10MIX_undiluted.known.tsv -o DNA10MIX.assess.tsv

Assessed onebp vs known in 2 files (260 species; 1 samples)
$ cut -f 1-5,9,11 DNA10MIX.assess.tsv
<SEE TABLE BELOW>

As this is still only one sample, new table DNA10MIX.assess.tsv is very similar to what we had before:
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#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 8 2 2 248 0.80 0.333
Phytophthora agathidicida 0 1 0 0 0.00 1.000
Phytophthora boehmeriae 0 0 1 0 0.00 1.000
Phytophthora cactorum 0 0 1 0 0.00 1.000
Phytophthora capsici 1 0 0 0 1.00 0.000
Phytophthora castaneae 1 0 0 0 1.00 0.000
Phytophthora fallax 1 0 0 0 1.00 0.000
Phytophthora foliorum 1 0 0 0 1.00 0.000
Phytophthora gloveri 0 1 0 0 0.00 1.000
Phytophthora obscura 1 0 0 0 1.00 0.000
Phytophthora plurivora 1 0 0 0 1.00 0.000
Phytophthora rubi 1 0 0 0 1.00 0.000
Phytophthora siskiyouensis 1 0 0 0 1.00 0.000
OTHER 248 SPECIES IN DB 0 0 0 248 0.00 0.000

It is clear from the metrics that the classifier is performing better on the second 10 species mock community.

Assessing multiple samples

Next, let’s run the assess command on all four positive control samples, by giving the combined intermediate filenames,
and all the expected files:

$ thapbi_pict assess -i summary/thapbi-pict.ITS1.onebp.tsv \
expected/ -o thabpi-pict.ITS1.assess.tsv

Assessed onebp vs known in 5 files (260 species; 4 samples)
$ cut -f 1-5,9,11 thabpi-pict.ITS1.assess.tsv
<SEE TABLE BELOW>

New table thabpi-pict.ITS1.assess.tsv is similar, but notice all the per-species lines have TP+FP+FN+TN=4
as there were 4 samples:
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#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 32 8 13 987 0.75 0.396
Phytophthora agathidicida 0 3 0 1 0.00 1.000
Phytophthora aleatoria 0 1 0 3 0.00 1.000
Phytophthora alpina 0 1 0 3 0.00 1.000
Phytophthora austrocedri 1 0 0 3 1.00 0.000
Phytophthora boehmeriae 0 0 4 0 0.00 1.000
Phytophthora cactorum 1 0 3 0 0.40 0.750
Phytophthora capsici 3 0 0 1 1.00 0.000
Phytophthora castaneae 3 0 0 1 1.00 0.000
Phytophthora chlamydospora 0 0 1 3 0.00 1.000
Phytophthora cinnamomi 0 0 1 3 0.00 1.000
Phytophthora fallax 3 0 0 1 1.00 0.000
Phytophthora foliorum 3 0 0 1 1.00 0.000
Phytophthora gloveri 0 3 0 1 0.00 1.000
Phytophthora gonapodyides 1 0 0 3 1.00 0.000
Phytophthora ilicis 1 0 0 3 1.00 0.000
Phytophthora kernoviae 1 0 0 3 1.00 0.000
Phytophthora lateralis 0 0 1 3 0.00 1.000
Phytophthora obscura 4 0 0 0 1.00 0.000
Phytophthora plurivora 3 0 1 0 0.86 0.250
Phytophthora pseudosyringae 1 0 0 3 1.00 0.000
Phytophthora ramorum 1 0 0 3 1.00 0.000
Phytophthora rubi 3 0 0 1 1.00 0.000
Phytophthora siskiyouensis 3 0 0 1 1.00 0.000
Phytophthora syringae 0 0 1 3 0.00 1.000
Phytophthora x cambivora 0 0 1 3 0.00 1.000
OTHER 235 SPECIES IN DB 0 0 0 940 0.00 0.000

This time the OVERALL line says we had 32 TP, 8 FP, 13 FN and 827 TN. Their total, 32+8+13+927 = 980 = 4 * 245,
is the number of samples times the number of species in the database.

Running assessment as part of pipeline

Provided they follow the expected naming convention, if you include your control files *.known.tsv as one of the
pipeline inputs, it will call the classifier assessment after running the classifier and producing the main reports:

$ thapbi_pict pipeline -i raw_data/ expected/ -s intermediate/ \
-o summary/with-metadata -n raw_data/NEGATIVE*.fastq.gz \
-t metadata.tsv -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 -x 16

...
$ ls -1 summary/with-metadata.*
summary/with-metadata.ITS1.assess.confusion.onebp.tsv
summary/with-metadata.ITS1.assess.onebp.tsv
summary/with-metadata.ITS1.assess.tally.onebp.tsv
summary/with-metadata.ITS1.onebp.tsv
summary/with-metadata.ITS1.reads.onebp.tsv
summary/with-metadata.ITS1.reads.onebp.xlsx
summary/with-metadata.ITS1.samples.onebp.tsv
summary/with-metadata.ITS1.samples.onebp.xlsx
summary/with-metadata.ITS1.tally.tsv

(continues on next page)
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(continued from previous page)

$ diff summary/with-metadata.ITS1.assess.onebp.tsv \
thabpi-pict.ITS1.assess.tsv

Output file summary/with-metadata.ITS1.assess.onebp.tsv will match the output above.

Interpretation of the mock communities

Running our pipeline with the default settings results in a number of false positives (all unavoidable as they come from
conflicting marker sequences in the database, see the thapbi_pict conflicts command), and some false negatives
(on top of the explained absence of Phytophthora boehmeriae). Specifically we have 6 unexplained false negatives on
the 15 species mix, and are missing Phytophthora cactorum in all three samples of the 10 species mix.

This means that with the default settings THAPBI PICT gives a more cautious set of predictions than the metapy tool
used in the original data analysis (see Riddell et al. (2019) Table 1, Table 2) which appears to consider even singletons.

Attempting to compare the results in their Table 1 with our own numbers is complicated since it appears to show just
one of the 10 species mixes (so the TP count is out of 10) while we used all three (for a TP count out of 30).

We can therefore pick a single representative sample for the 10 species mix, to make direct comparison more straight
forward:

$ thapbi_pict assess -i summary/thapbi-pict.ITS1.onebp.tsv \
expected/DNA15MIX.known.tsv expected/DNA10MIX_undiluted.known.tsv \
| head -n 2 | cut -f 1-5,9,11

Assessed onebp vs known in 3 files (260 species; 2 samples)
#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 16 4 9 491 0.71 0.448

We can recover most of the missing species (the FN) by dropping the minimum abundance thresholds (which requires
deleting the intermediate FASTA files, or using a different intermediate folder, and re-running with lower settings for
-a and -f), at the cost of more FP.

For instance, we find traces of P. syringae with less than 10 reads in the 15 species mix (consistent with Table 2), and
even P. boehmeriae with less than 10 reads in two of the 10 species mix (not reported in Table 2).

Interestingly even excluding only singletons (using -a 2 -f 0), we didn’t find any matches to Phytophthora cactorum
in the three samples of the 10 species mix. However, there is a sequence perfectly matching database entries for P.
idaei present at around 40 to 60 copies, and in light of the original paper, this is likely what was intended to be in the
mixture as P. cactorum.

Again even excluding only singletons, we didn’t find any matches to P. plurivora in the 15 species mix (Table 2 in the
original paper suggests present with only 2 reads).

We can optimise the threshold by maximising the F1 score and minimising ad-hoc-loss for these two samples. This is
done at the end of the run.sh script with a simple parameter sweep of the absolute threshold (-a) with the fractional
threshold unused (-f 0). This produces a simple table:

$ cut -f 1-5,9,11 summary/mocks_a2.assess-vs-abundance.tsv
<SEE TABLE BELOW>

Open the table in Excel if you prefer, the columns of particular interest:
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#Threshold TP FP FN TN F1 Ad-hoc-loss
A=2 22 17 3 478 0.69 0.476
A=10 20 9 5 486 0.74 0.412
A=20 20 8 5 487 0.75 0.394
A=30 19 8 6 487 0.73 0.424
A=40 19 6 6 489 0.76 0.387
A=50 19 5 6 490 0.78 0.367
A=60 18 5 7 490 0.75 0.400
A=70 18 5 7 490 0.75 0.400
A=80 18 5 7 490 0.75 0.400
A=90 16 4 9 491 0.71 0.448
A=100 16 4 9 491 0.71 0.448

This suggests the optimal absolute abundance threshold for these two samples is in the region of 50 reads, giving 19
TP, 5 FP, and 6 FN for an F1 of 0.78 and ad-hoc-loss of 0.367. If we run the optimisation on all four samples (one with
15 species, three with 10 species), this suggests somewhere in between this and the default of 100.

4.2 Environmental Oomycetes ITS1

The first worked example looked at Phytophthora ITS1 data from woody-host trees, using the same PCR primers as the
THAPBI PICT defaults, and the default database of Phytophthora ITS1 data provided.

Here we re-analyse a published dataset from a different group, doing Illumina MiSeq ITS1 amplicon sequencing of
irrigation water samples from Oregon:

Redekar et al. (2019) Diversity of Phytophthora, Pythium, and Phytopythium species in recycled irrigation
water in a container nursery. https://doi.org/10.1094/PBIOMES-10-18-0043-R

Different PCR primers were used to cover Pythium and Phytopythium as well as Phytophthora. This requires a new
database of markers.

4.2.1 Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest source code release (.tar.gz file).
You should find it contains a directory examples/recycled_water/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis discussed.

The documentation goes through running each step of the analysis gradually, including building a custom database,
before finally calling pipeline command to do it all together. We provide script run.sh to do the final run-though
automatically, but encourage you to follow along the individual steps first.
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FASTQ data

File PRJNA417859.tsv was download from the ENA and includes the FASTQ checksums, URLs, and sample meta-
data. With a little scripting to extract the relevant sample metadata for use with THAPBI PICT this was reformatted as
metadata.tsv (see below).

Script setup.sh will download the raw FASTQ files for Redekar et al. (2019) from https://www.ebi.ac.uk/ena/data/
view/PRJNA417859 - you could also use https://www.ncbi.nlm.nih.gov/bioproject/PRJNA417859/

It will download 768 raw FASTQ files (384 pairs), taking about 4.8GB on disk

If you have the md5sum tool installed (standard on Linux; we suggest conda install coreutils to install this on
macOS), verify the FASTQ files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
...
$ cd ..

There is no need to decompress the files.

Amplicon primers & reference sequences

A region of ITS1 was amplified using the ITS6/ITS7 primer pair (GAAGGTGAAGTCGTAACAAGG and
AGCGTTCTTCATCGATGTGC) which bind the 5.8S rDNA, described here:

Cooke et al. (2000) A molecular phylogeny of Phytophthora and related oomycetes. https://doi.org/10.
1006/fgbi.2000.1202

The left primer (ITS6) matches the THAPBI PICT default, but their right primer (ITS7) matches about 60bp further
downstream in Phytophthora. This means we can use THAPBI PICT default settings and get meaningful but blinkered
results (for the subset of the data which our narrower primer set would have amplified, using a Phytophthora centric
database).

In order to classify beyond Phytophthora, we need to build a THABPI PICT database including Pythium and Phytopy-
thium. Redekar et al. (2019) Supplementary Table 3 provides a list of 1454 unique accessions and the species they
assigned to it (not always the same as that listed on the NCBI record, as those annotations can change). Looking at those
sequences, bar a handful they extend though the right primer. However, only about 50 have the left primer sequence
included (depending how stringent you are), and the rest are also missing the next 32bp.

The ITS6 primer is situated within a highly conserved region, and the next 32bp is highly conserved, usually
TTTCCGTAGGTGAACCTGCGGAAGGATCATTA. Unfortunately, the majority of published Oomycetes ITS1 sequences omit
this. For the curated Phytophthora in the THAPBI PICT default database, we have inserted the expected sequence -
and have yet to find a counter example. However, Redekar et al. (2019) took the other obvious choice, and remove it
from their reads:

trimming extra bases from read1: an additional 32 bases from the 5 end of read1, which mapped to 18S
segment, were trimmed as the oomycete ITS reference database does not include the 18S segment;

We can do something similar in THAPBI PICT by treating this typically conserved 32bp region as part of the left
primer - requiring it be present (while allowing some ambiguity) and removing it - leaving a shorter fragment which
can be matched to a database built of those 1454 accessions.
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Metadata

The provided file metadata.tsv has seven columns:

1. Source, “Reservoir”, “River” or “Runoff”

2. Site, “A”, “B”, “C”, . . . , “M”

3. Process, “Filtration” or “Leaf baiting”

4. Period, “01” to “28”

5. Year-Month, “2015-04” to “2016-05” (given as “YYYY-MM” for sorting)

6. Sample, author’s sample name, e.g. “OSU484”

7. Accession, assigned by the public archive, e.g. “SRR6303585”

When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 7 -c 1,2,3,4,5,6

Argument -t metadata.tsv says to use this file for the metadata.

The -x 7 argument indicates the filename stem can be found in column 7, Accession.

Argument -c 1,2,3,4,5,6 says which columns to display and sort by (do not include the indexed column again). If
for example the accession was listed first, it would be sorted on that, which is not helpful here. If you prefer to sort on
site first, or by date before process, this should be straightforward.

We have not given a -g argument to assign colour bands in the Excel reports, so it will default to the first column in
-c, meaning we get three coloured bands for “Reservoir”, “River” and “Runoff”.

Other files

Files Redekar_et_al_2019_sup_table_3.tsv (plain text tab separated table) and
Redekar_et_al_2019_sup_table_3.fasta (FASTA format) are based on the Excel format Supplementary
Table 3 from the paper.

4.2.2 Pipeline with defaults

Running thapbi-pict pipeline

First, we will run the THAPBI PICT pipeline command with largely default settings (including the default database and
primers), other than including the metadata about the water samples. Note that this dataset has no blanks or negative
controls, so we must trust the default minimum abundance threshold.

The key values which we will be changing later are the primers and database.

Assuming you have the FASTQ files in raw_data/, run the pipeline command as follows, and you should get the listed
output report files:

$ mkdir -p intermediate_defaults/ summary/
$ thapbi_pict pipeline \
-i raw_data/ -o summary/recycled-water-defaults \
-s intermediate_defaults/ \
-t metadata.tsv -x 7 -c 1,2,3,4,5,6

...
(continues on next page)
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(continued from previous page)

onebp classifier assigned species/genus to 436 of 794 unique sequences from 1 files
Wrote summary/recycled-water-defaults.ITS1.samples.onebp.*
Wrote summary/recycled-water-defaults.ITS1.reads.onebp.*
...
$ ls -1 summary/recycled-water-defaults.*
summary/recycled-water-defaults.ITS1.onebp.tsv
summary/recycled-water-defaults.ITS1.reads.onebp.tsv
summary/recycled-water-defaults.ITS1.reads.onebp.xlsx
summary/recycled-water-defaults.ITS1.samples.onebp.tsv
summary/recycled-water-defaults.ITS1.samples.onebp.xlsx
summary/recycled-water-defaults.ITS1.tally.tsv

Here we used -r (or --report) to specify a different stem for the report filenames. The sample metadata options were
described earlier – this is perhaps an idealised example in that metadata.tsv was created so that we add the first six
columns the table (sorted in that order), where -x 7 means index to the accession (filename prefix) in column seven.

Notice the output reported a taxonomic assignment for 431 of 794 unique sequences - that’s 54%, but considerably
higher if we consider the reads.

Results

We will compare and contrast the following four samples with the second run using different primers and a custom
database. These were deliberately picked from the less diverse samples for clarity.

Here we pick out the four samples at the command line with grep, you can also look at the
recycled-water-defaults.ITS1.samples.onebp.xlsx file in Excel:

$ cut -f 6,7,8 summary/recycled-water-defaults.ITS1.samples.onebp.tsv \
| grep -E "(SRR6303586|SRR6303586|SRR6303588|SRR6303596|SRR6303948)"

OSU482 SRR6303588 Phytophthora chlamydospora, Phytophthora x stagnum(*), Unknown
OSU483 SRR6303586 Phytophthora chlamydospora, Phytophthora x stagnum(*)
OSU536.s203 SRR6303948 Phytophthora ramorum
OSU121 SRR6303596 Phytopythium (unknown species)

Three of these four have Phytophthora (and one with an unknown), while the fourth has Phytopythium. However, this
is discarding all the reads which do not match the default Phytophthora centric primers.

4.2.3 Different primers

This example is based on the following paper from another research group:

• Redekar et al. (2019) Diversity of Phytophthora, Pythium, and Phytopythium species in recycled irrigation water
in a container nursery. https://doi.org/10.1094/PBIOMES-10-18-0043-R

The worked example starts by running the pipeline command with default settings, which uses the default Phytophthora
centric database and primers. We can do that because the tool’s default database defines primers which target a subset
of the longer amplicon amplified in this example dataset.

Now we will change the primer settings. Using the actual right primer will extend the Phytophthora FASTA se-
quences about 60bp (and accept many more non-Phytophthora). The left primer is actually the same, but to match
the analysis and references from Redekar et al. (2019), we want to trim off the typically conserved 32bp fragment
TTTCCGTAGGTGAACCTGCGGAAGGATCATTA from the start of each amplicon, which we can do by pretending this is part
of the left primer.
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The up-shot is by cropping about 32bp off the start, and adding about 60bp at the end, we will no longer get any matches
against the default database with the default classifier (it is too strict, the matches are too distant).

This means before we can run the entire pipeline, we will need to build a custom database. We’ll discuss the sequences
which go into this database next, but this use --marker ITS1-long to name this alternative marker, and set --left
GAAGGTGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTA and --right AGCGTTCTTCATCGATGTGC to de-
clare the primers.

4.2.4 Building a custom database

We will build a database using the same public sequences as Redekar et al. (2019), using the accessions given in
Supplementary Table 3 in Excel format.

We have taken their list of accessions and species names (ignoring voucher or isolate numbers), edited some
punctuation to match the NCBI taxonomy, added some missing accession version suffixes, deduplicated, and
made a simple tab-separated plain text table, with 1454 entries. In the setup instructions for this example you
should have got a copy of this file, named Redekar_et_al_2019_sup_table_3.tsv, and a matching FASTA file
Redekar_et_al_2019_sup_table_3.fasta which we will import into the new database.

This table is sorted alphabetically by species then accession, and starts:

$ head Redekar_et_al_2019_sup_table_3.tsv
<SEE TABLE EXCERPT BELOW>

You could also look at the TSV file in Excel:

HQ643082.1 Achlya ambisexualis
HQ643083.1 Achlya ambisexualis
HQ643084.1 Achlya americana
HQ643085.1 Achlya aquatica
HQ643086.1 Achlya bisexualis
HQ643087.1 Achlya bisexualis
HQ643088.1 Achlya bisexualis
HQ643089.1 Achlya caroliniana
HQ643090.1 Achlya colorata
HQ643091.1 Achlya colorata

Determining the species

Consider FJ666127.1 which Redekar et al. (2019) listed as Phytophthora aquimorbida - yet at the time of writing,
the file downloaded from https://www.ebi.ac.uk/ena/browser/api/fasta/FJ666127.1 is as follows, with a species name
of Phytophthora sp. CCH-2009b:

>ENA|FJ666127|FJ666127.1 Phytophthora sp. CCH-2009b isolate 40A6 internal transcribed␣
→˓spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal␣
→˓transcribed spacer 2, partial sequence.
CCACACCTAAAAACTTTCCACGTGAACTGTCTGTGATGTTGGGGGGCTGCTGCTGCTGCT
TCGGTGGCGGCGTGCTCCCATCAAACGAGGCCCTGGGCTGCAAAGTCGGGGGTAGTAGTT
ACTTTTTGTAAACCCTTTTCCTGTATTTTCTGAATATACTGGGGGGACGAAAGTCTCTGC
TTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAGAACG
CTGCGAACTGCGATACGTAATGCGAATTGCAGGATTCAGTGAGTCATCGAAATTTTGAAC
GCATATTGCACTTCCGGGTTATGCCTGGGAGTATGCCTGTATCAGTGTCCGTACATCAAT

(continues on next page)
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CTTGGCTTCCTTCCTTCCGTGTAGTCGGTGGCGGGAACGCGCAGACGTGAAGTGTCTTGC
CTGTGGCTCCAGCTGTTGTTGGGGTGGTGTGGGCGAGTCCTTTGAAATGTAAGATACTGT
TCTTCTCTTTGCTGGAAAAGCGTGCGCTGTGTGGTTGTGGAGGCTGCCGTGGTGGCCAGT
CGGCGACTGACTTCGTGCTGATGCGTGTGGAGAGGCTCTGGATTCGCGGTATGGTTGGCT
TCGGCTGAACTTCTGCTTATTTGGGTGTCTTTTCGCTGCGTTGGCGTGTCGGGGTTGGTG
AACCGTAGTCATTTCGGCTTGGCTTTTGAACCGCGTGGCTGTAGCGCGAAGTATGGCGGC
TGCCTTTGTGGCGGCCGAGAGGACGACCTATTTGGGACGATTGTGCGGCCTCGTGCTGCA
TCTCAA

Notice that the species name runs into the general description, which is problematic. Unless THAPBI PICT has a
pre-loaded taxonomy to use for validation, it has to use heuristics to split up this long string - which is not fully reliable.

If we look at https://www.ncbi.nlm.nih.gov/nucleotide/FJ666127.1 on the NCBI website, we see it in GenBank format
which is a little different:

LOCUS FJ666127 786 bp DNA linear PLN 09-MAR-2009
DEFINITION Phytophthora sp. CCH-2009b isolate 40A6 internal transcribed spacer

1, partial sequence; 5.8S ribosomal RNA gene, complete sequence;
and internal transcribed spacer 2, partial sequence.

ACCESSION FJ666127
VERSION FJ666127.1
KEYWORDS .
SOURCE Phytophthora aquimorbida
ORGANISM Phytophthora aquimorbida

Eukaryota; Stramenopiles; Oomycetes; Peronosporales;
Peronosporaceae; Phytophthora.

...

The NCBI metadata has the species Phytophthora aquimorbida separate from the author submitted description which
starts with an older name, “Phytophthora sp. CCH-2009b” - which is in fact listed as an alias on the NCBI taxonomy
database under taxonomy ID 611798.

THAPBI PICT offers two solutions. By default the entire FASTA description (after the identifier) is the species name,
giving full control to the user.

However, -c ncbi switches on NCBI heuristics. This is best used with a pre-loaded NCBI taxonomy in the database
for validation purposes. This tries as many words as possible from the NCBI style FASTA description in looking for
a match in the NCBI taxonomy, including synonyms. If that fails and lax mode is used (-x or --lax), it falls back on
heuristics to identify which part of the description is the species.

Species validation

THAPBI PICT by default validates imports against the NCBI taxonomy, and that includes support for known synonyms.
This requires downloading the taxonomy files and running the thapbi-pict load-tax command.

The NCBI currently provide their taxonomy dump in two formats, old and new. THAPBI PICT supports both, we’ll
use the old format as the download is half the size - we only need the names.dmp, nodes.dmp and merged.dmp files:

$ curl -L -O https://ftp.ncbi.nih.gov/pub/taxonomy/taxdump_archive/taxdmp_2019-12-01.zip
...
$ unzip -n -d taxdmp_2019-12-01 taxdmp_2019-12-01.zip
...
$ ls -1 taxdmp_2019-12-01/*.dmp
taxdmp_2019-12-01/citations.dmp

(continues on next page)
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taxdmp_2019-12-01/delnodes.dmp
taxdmp_2019-12-01/division.dmp
taxdmp_2019-12-01/gencode.dmp
taxdmp_2019-12-01/merged.dmp
taxdmp_2019-12-01/names.dmp
taxdmp_2019-12-01/nodes.dmp

Building the database becomes a two-step process, first importing the taxonomy, and second importing the sequences.

If you are working with different organisms you will also need to set the -a or --ancestors option which defaults to
NCBI taxonomy ID 4762 for Oomycetes.

Primer trimming

We have provided file Redekar_et_al_2019_sup_table_3.fasta which contains primer trimmed versions of the
full sequences of each accession, plus the species name from Redekar_et_al_2019_sup_table_3.tsv which was
based on those given in Redekar et al. (2019) Supplementary Table 3 but with some light curation to better match
the NCBI usage. Note that matching sequences have been combined into single FASTA records with a semi-colon
separated description.

The sequencing trimming ought to be very close to that used in the Redekar et al. (2019) pa-
per’s database. This file was constructed with a short Python script parsing the information in
Redekar_et_al_2019_sup_table_3.tsv and the downloaded full sequences. Then cutadapt -g
GAAGGTGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTA ... found and removed 64 left prefixes.
This was followed by running cutadapt -a GCACATCGATGAAGAACGCT ... which trimmed 1439 sequences (99.9%)
and warned that the “adapter” might be incomplete because the sequence preceding it was highly conserved. That
left 1451 sequences, but with many duplicates. This was made non-redundant giving 841 unique sequences with
de-duplicated entries recorded with semi-colon separated FASTA title lines.

Now, let’s load the FASTA file into a new THAPBI PICT database with the NCBI taxonomy pre-loaded (which will
enable synonym support), but not enforced (-x or --lax mode). We’ll name the new marker “ITS1-long” and record
the left and right primers which will be used later when processing the reads:

$ rm -rf Redekar_et_al_2019_sup_table_3.sqlite # remove it if already there
$ thapbi_pict load-tax -d Redekar_et_al_2019_sup_table_3.sqlite -t taxdmp_2019-12-01/
...
$ thapbi_pict import -d Redekar_et_al_2019_sup_table_3.sqlite \
--lax --sep ";" -i Redekar_et_al_2019_sup_table_3.fasta \
--left GAAGGTGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTA \
--right AGCGTTCTTCATCGATGTGC --marker ITS1-long

File Redekar_et_al_2019_sup_table_3.fasta had 841 sequences, of which 838 accepted.
Of 1451 potential entries, loaded 1451 entries, 0 failed parsing.

Just a few short sequences were rejected - giving in total 1451 entries. The vast majority are recorded with an NCBI
taxid, just four exceptions (visible if you run the last command with -v or --verbose):

• Phytophthora taxon aquatilis from FJ666126.1, which the NCBI say should be Phytophthora sp. CCH-2009a

• Phytophthora fragaefolia from AB305065.1, which the NCBI say should be Phytophthora fragariaefolia.

• Phytophthora citricola sensu stricto from FJ560913.1, which the NCBI say should be just Phytophthora citricola.

• Phytopythium sp. amazonianum from HQ261725.1, which the NCBI say should be Pythium sp. ‘amazonianum’.

None of these are clear cut (there were a lot more conflicts, mostly down to differences in punctuation, already addressed
in preparing the TSV and FASTA file).
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If you left off the -x (or --lax) option, those four would not have been imported into the database.

Taxonomic conflicts

The ITS1 region is not ideal as a barcode sequence. In the Phytophthora there are many cases where the same marker is
shared by multiple species. The thapbi_pict conflicts command is provided to check for this, or worse – conflicts
at genus level:

$ thapbi_pict conflicts -h
...

Let’s run this on the custom database, with output to a file:

$ thapbi_pict conflicts -d Redekar_et_al_2019_sup_table_3.sqlite -o conflicts.tsv; echo
→˓"(Return code $?)"
(Return code 3)

Command line tools use a non-zero return code by convention to indicate an error. Here we return the number of genus
level conflicts, three, as can be seen by looking at the start of the plain text tab separated table output:

$ head -n 5 conflicts.tsv
#MD5 Level Conflicts
87e588784b04ba5f4538ff91acb50c0f genus Lagenidium;Pythium
9bb2ab5b9f88256516f2ae618c16a62e genus Brevilegnia;Globisporangium
ff35f216832110904cc6fd1c9def33fd genus Achlya;Saprolegnia
077ae505c0ad210aa4c071417a4f2f9a species Saprolegnia monilifera;Saprolegnia unispora

There are lots species level conflicts, some of which might be subspecies etc. However, more concerning is three genus
level conflicts.

One way to see which accessions are a problem is filtering the dump command output (introduced properly in Examining
the database), e.g.

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
| cut -f 2-6 | grep 87e588784b04ba5f4538ff91acb50c0f

HQ643136.1 Lagenidium caudatum 135481 87e588784b04ba5f4538ff91acb50c0f
HQ643539.1 Pythium flevoense 289620 87e588784b04ba5f4538ff91acb50c0f
Wrote 1451 txt format entries

Some could be mislabelled, for 9bb2ab5b9f88256516f2ae618c16a62e we see the vast majority are Globispo-
rangium ultimum with just one sequence HQ643127.1 labelled as Brevilegnia gracilis:

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
| cut -f 3-6 | grep 9bb2ab5b9f88256516f2ae618c16a62e \
| sort | uniq -c | sed 's/^ *//g'

1 Brevilegnia gracilis 944588 9bb2ab5b9f88256516f2ae618c16a62e
42 Globisporangium ultimum 2052682 9bb2ab5b9f88256516f2ae618c16a62e

Checking the current NCBI annotation of these accessions does not suggest problems with recent taxonomy changes
like Phytopythium vs Pythium.

Those assignments might have changed since this was written. Taxonomy is fluid, so if using any single authority, make
sure to document which version (e.g. month and year for the NCBI taxonomy).
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4.2.5 Specifying custom primers

Running prepare-reads step

We first ran the pipeline command with default settings, if you skipped that we can do just the reads now:

$ mkdir -p intermediate_defaults/
$ thapbi_pict prepare-reads -i raw_data/ -o intermediate_defaults/
...
$ ls -1 intermediate_defaults/ITS1/SRR*.fasta | wc -l
384

We then created a database from the Redekar et al. (2019) reference accessions with their primers. Now we can run
the pipeline again with this, which will start by applying the prepare-reads step to the FASTQ files in raw_data/:

$ mkdir -p intermediate/
$ thapbi_pict prepare-reads -i raw_data/ -o intermediate_long/ \
--db Redekar_et_al_2019_sup_table_3.sqlite

...
$ ls -1 intermediate_long/ITS1-long/SRR*.fasta | wc -l
384

Here the database says the left primer is GAAGGTGAAGTCGTAACAAGG (same as the THAPBI PICT de-
fault) plus TTTCCGTAGGTGAACCTGCGGAAGGATCATTA (conserved 32bp region), and that the right primer is
AGCGTTCTTCATCGATGTGC. This has reverse complement GCACATCGATGAAGAACGCT and is found about 60bp down-
stream of the default right primer in Phytophthora, and should also match Pythium and Phytopythium species.

i.e. We should now find the Phytophthora FASTA sequences extracted are about 60 - 32 = 28bp longer, and many more
non-Phytophthora are accepted.

Will now pick a couple of samples to compare and contrast with the first run. For clarity these examples are deliberately
from the less diverse samples. The FASTA sequences have been line wrapped at 80bp for display.

Longer sequences

We will start with SRR6303586 aka OSU483, a leaf-baiting sample from a reservoir. With the default primer trimming
looking at the reads report, or the simpler sally table, focusing on just the one sample and filtering out non-zero counts:

$ tail -n +10 summary/recycled-water-defaults.ITS1.tally.tsv \
| cut -f 3,386 | grep -v "^0"

<SEE TABLE BELOW>

You could instead select and filter on this column in Excel:

SRR6303586Sequence
35109 TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAAACTTTCCACGT-

GAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACCCTTTCTTTAAATACTGAACATACT
10271 TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAAACTTTCCACGT-

GAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACTCTTTCTTTAAATACTGAACATACT
580 TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAACTTTCCACGTGAAC-

CGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACCCTTTCTTTAAATACTGAACATACT
157 TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAACTTTCCACGTGAAC-

CGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACTCTTTCTTTAAATACTGAACATACT
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Four very similar sequences (differing in the length of the poly-A run, seven is more common than six, and a C/T SNP
towards the end), all matched to Phytophthora chlamydospora with THAPBI PICT’s default settings.

With the new primer setting, which you can see listed at the start of the header, we again get four sequences passing
the abundance threshold:

$ tail -n +10 summary/recycled-water-custom.ITS1-long.tally.tsv \
| cut -f 3,386 | grep -v "^0"

<SEE TABLE BELOW>

As before, you may prefer to open this as a spreadsheet:

SRR6303586Sequence
33451 CCACACCTAAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACCCTTTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC
9729 CCACACCTAAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACTCTTTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC
545 CCACACCTAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACCCTTTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC
143 CCACACCTAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACTCTTTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC

Again four very similar sequences, each as before but with the starting TTTCCGTAGGTGAACCTGCGGAAGGATCATTA re-
moved, and instead extended by GTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC.

The abundances are similar but slightly lower - there would have been some minor variation in trimmed regions which
would have been pooled, so with less trimming we tend to get lower counts.

You can verify by NCBI BLAST online that the first and third (the C form) give perfect full length matches to published
Phytophthora chlamydospora, while an exact match to the T forms has not been published at the time of writing (yet
this occurs at good abundance in many of these samples).

Losing sequences

If you examine SRR6303588 you will see a similar example, starting with five unique sequences (with one only just
above the default abundance threshold), dropping to four unique sequences.

Finding Pythium

Now for a more interesting example, SRR6303596 aka OSU121, another leaf baiting sample but from runoff water. With
the defaults (using grep to omit the header):

$ tail -n +10 summary/recycled-water-defaults.ITS1.tally.tsv \
| cut -f 13,386 | grep -v "^0"

<SEE TABLE BELOW>

As a table,

SRR6303596Sequence
953 TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAATCTTTCCACGT-

GAATTGTTTTGCTGTACCTTTGGGCTTCGCCGTTGTCTTGTTCTTTTGTAAGAGAAAGGGGGAGGCGCGGTTGGAGGCCATCAGGGGTGTGTTCGTCGCGGTTTGTTTCTTTTGTTGGAACTTGCGCGCGGATGCGTCCTTTTGTCAACCCATTTTTTGAATGAAAAACTGATCATACT

There was a single sequence, with no matches (NCBI BLAST suggests this is Phytopythium litorale). Now with the
revised primer settings this sequence is still present but only the second most abundant sequence:
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$ tail -n +10 summary/recycled-water-custom.ITS1-long.tally.tsv \
| cut -f 13,386 | grep -v "^0"

<SEE TABLE BELOW>

As a table, note this is sorted by global abundance:

SRR6303596Sequence
40503 CCACACCAAAAAAACTTTCCACGTGAACCGTTGTAACTATGTTCTGTGCTCTCTTCTCG-

GAGAGAGCTGAACGAAGGTGGGCTGCTTAATTGTAGTCTGCCGATGTACTTTTAAACCCATTAAACTAATACTGAACTATACTCCGAAAACGAAAGTCTTTGGTTTTAATCAATAACAACTTTCAGCAGTGGATGTCTAGGCTC
878 CCACACCTAAAAATCTTTCCACGTGAATTGTTTTGCTGTACCTTTGGGCTTCGC-

CGTTGTCTTGTTCTTTTGTAAGAGAAAGGGGGAGGCGCGGTTGGAGGCCATCAGGGGTGTGTTCGTCGCGGTTTGTTTCTTTTGTTGGAACTTGCGCGCGGATGCGTCCTTTTGTCAACCCATTTTTTGAATGAAAAACTGATCATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC
388 CCACACCAAAAAACTTTCCACGTGAACCGTTGTAACTATGTTCTGTGCTCTCTTCTCGGA-

GAGAGCTGAACGAAGGTGGGCTGCTTAATTGTAGTCTGCCGATGTACTTTTAAACCCATTAAACTAATACTGAACTATACTCCGAAAACGAAAGTCTTTGGTTTTAATCAATAACAACTTTCAGCAGTGGATGTCTAGGCTC
128 CCACACCAAAAAAACTTTCCACGTGAACCGTTGTAACTATGTTCTGTGCTCTCTTCTCG-

GAGAGAGCTGAACGAAGGTGGGCTGCTTAATTGTAGTCTGCCGATGTACTTTTAAACCCATTAAACTAATACTGAACTATACTCCGAAAACGAAAGTCTTTGGTTTTAATCAATAACAACTTTCAGCAGTGGATGTCTAGGCGC
102 CCACACCAAAAAAACTTTCCACGTGAACCGTTGTAACTATGTTCTGTGCTCTCTTCTCG-

GAGAGAGCTGAACGAAGGTGGGCTGCTTAATTGTAGTCTGCCGATGTACTTTTAAACCCATTAAACTAATACTGAACTATACTCCGAAAACGAAAGTCTTTGGTTTTAATCAATAACAACTTTCAGCAGTGGATGTCTAGGCCC
190 CCACACCAAAAAAACTTTCCACGTGAACCGTTGTAACTATGTTCTGTGCTCTCTTCTCG-

GAGAGAGCTGAACGAAGGTGGGCTGCTTAATTGTAGTCTGCCGATGTACTTTTAAACCCATTAAACTAATACTGAACTATACTCCGGAAACGAAAGTCTTTGGTTTTAATCAATAACAACTTTCAGCAGTGGATGTCTAGGCTC

The probable Phytopythium litorale has been joined by five shorter and very similar sequences (differing by a handful
of SNPs and a poly-A length change), which NCBI BLAST matches suggest are all Pythium coloratum/dissotocum.

Finding more

Another interesting example, SRR6303948 aka OSU536.s203, from a runoff filtration sample. First with the default
settings, a single unique sequence matching Phytophthora ramorum:

$ tail -n +10 summary/recycled-water-defaults.ITS1.tally.tsv \
| cut -f 365,386 | grep -v "^0"

<SEE TABLE BELOW>

As a table,

SRR6303948Sequence
1439 TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAACTTTCCACGTGAAC-

CGTATCAAAACCCTTAGTTGGGGGCTTCTGTTCGGCTGGCTTCGGCTGGCTGGGCGGCGGCTCTATCATGGCGAGCGCTTGAGCCTTCGGGTCTGAGCTAGTAGCCCACTTTTTAAACCCATTCCTAAATACTGAATATACT

Now with the revised primer settings, we get a further nine sequences - and the extended Phytophthora ramorum
sequence drops to third most abundant:

$ tail -n +10 summary/recycled-water-custom.ITS1-long.tally.tsv \
| cut -f 365,386 | grep -v "^0"

<SEE TABLE BELOW>

As a table, note this is sorted by global abundance:
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SRR6303948Sequence
3287 CCACACCCGGGATCCTCGATCTTTCTCCTAGGTTAATTGTTGGGCCCTTTGAGGGTGGGC-

CTTAGGTGCGCTCAAGGATTTTTTCCTGTCCCATGTAGCTTTACTTATTTTTTTGCCTGGGTAAATGATGGATTATTTTTACAACTTTCAGCAATGGATGTCTAGGCTC
438 CCACACCAAAAAAACTTACCACGTGAATCTGTACTGTTTAGTTTTGTGCTGCGTTC-

GAAAGGATGCGGCTAAACGAAGGTTGGCTTGATTACTTCGGTAATTAGGCTGGCTGATGTACTCTTTTAAACCCCTTCATACCAAAATACTGATTTATACTGTGAGAATGAAAATTCTTGCTTTTAACTAGATAACAACTTTCAACAGTGGATGTCTAGGCTC
5329 CCACACCAAAAAAACACCCCACGTGAATTGTACTGTATGAGCTATGTGCTGCGGATTTCT-

GCGGCTTAGCGAAGGTTTCGAAAGAGACCGATGTACTTTTAAACCCCTTTACATTACTGTCTGATAAATTACATTGCAAACATTTAAAGTGGTTGCTCTTAATTTAACATACAACTTTCAACAGTGGATGTCTAGGCTC
144 CCACACCCGGGATCCTCGATCTTTCTCCTAGGTTAATTATTGGGCCCTTTGAGGGTGGGC-

CTTAGGTGCGCTCAAGGATTTTTTCCTGTCCCATGTAGCTTTACTTATTTTTTTGCCTGGGTAAATGATGGATTATTTTTACAACTTTCAGCAATGGATGTCTAGGCTC
230 AATCTATCACAATCCACACCTGTGAACTTGCTTGTTGGCCTCTGCATGTGCTTCGGTAT-

GTGCAGGTTGAGCCGATCGGATTAACTTCTGGTCGGCTTGGGGCCTCAACCCAATCCTCGGATTGGTTTGGGGTCGGTCTCTATTAACAACCAACACCAAACCAAACTATAAAAAAACTGAGAATGGCTTAGAGCCAAACTCACTAACCAAGACAACTCTGAACAACGGATATCTTGGCTA
1319 CCACACCTAAAAAACTTTCCACGTGAACCGTATCAAAACCCTTAGTTGGGGGCTTCT-

GTTCGGCTGGCTTCGGCTGGCTGGGCGGCGGCTCTATCATGGCGAGCGCTTGAGCCTTCGGGTCTGAGCTAGTAGCCCACTTTTTAAACCCATTCCTAAATACTGAATATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC
224 CCACACCCGGGATCCTCGATCTTTCTCCTAGGTTAATTGTTTGGCCCTTTGAGGGTGGGC-

CTTAGGTGCGCTCAAGGATTTTTTCCTGTCCCATGTAGCTTTACTTATTTTTTTGCCTGGGTAAATGATGGATTATTTTTACAACTTTCAGCAATGGATGTCTAGGCTC
231 CCACACCCGGGATCCTCGATCTTTCTCCTAGGTTAATTGTTGGGCCCTTTGAGGGTGGGC-

CTTAGGTGCGCTCAAGGATTTTTTCCTGTCCCATGTAGCTTTACTTATTTTTTTGCCTGGGTAAATGATGGATTATTTTTACAACTTTCAGCAACGGATGTCTAGGCTC
102 CCACACCAAAAAACACCCCACGTGAATTGTACTGTATGAGCTATGTGCTGCGGATTTCT-

GCGGCTTAGCGAAGGTTTCGAAAGAGACCGATGTACTTTTAAACCCCTTTACATTACTGTCTGATAAATTACATTGCAAACATTTAAAGTGGTTGCTCTTAATTTAACATACAACTTTCAACAGTGGATGTCTAGGCTC
189 CCACACCTAAAAACTTTCCACGTGAATCGTTCTATATAGCTTTGTGCTTTGCGGAAACGC-

GAGGCTAAGCGAAGGATTAGCAAAGTAGTACTTCGGTGCGAAACACTTTTCCGATGTATTTTTCAAACCCTTTTACTTATACTGAACTATACTCTAAGACGAAAGTCTTGGTTTTAATCCACAACAACTTTCAGCAGTGGATGTCTAGGCTC

NCBI BLAST suggests some of the new sequences could be Oomycetes, but there are no very close matches - and
some of the tenuous best matches include uncultured fungus, diatoms, green algae, and even green plants.

4.2.6 Examining the database

This example follows on from Different primers, and assumes you have used thapbi_pict import with the provided
FASTA file (based on Supplementary Table 3 in Redekar et al. 2019), and created a THAPBI PICT database named
Redekar_et_al_2019_sup_table_3.sqlite.

As the extension might suggest, this is an Sqlite v3 database, and can be examined directly at the command line if
you are very curious. However, we will briefly review the provided commands within THAPBI PICT for checking a
database.

Database export

The thapbi_pict dump command is intended for database export and/or answering simple queries without needing
to use SQL to query the database. It defaults to giving plain text tab separated tables, but FASTA is also supported:

$ thapbi_pict dump -h
...

By default it outputs all the sequences, but you can do simple taxonomic filtering at genus or species level, for example:

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
-g Phytophthora -s fallax -o P_fallax.tsv

Wrote 5 txt format entries to 'P_fallax.tsv'
$ cut -c 1-84 P_fallax.tsv
<SEE TABLE BELOW>
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This gives a short table, with the sequence truncated for display:

#Marker Identifier Genus Species TaxID MD5 Se-
quence

ITS1-
long

DQ297398.1 Phytoph-
thora

fallax 360399 693cf88b7f57bcc7a3532a6b7ff0268a CCA

ITS1-
long

HQ261557.1 Phytoph-
thora

fallax 360399 693cf88b7f57bcc7a3532a6b7ff0268a CCA

ITS1-
long

HQ261558.1 Phytoph-
thora

fallax 360399 693cf88b7f57bcc7a3532a6b7ff0268a CCA

ITS1-
long

HQ261559.1 Phytoph-
thora

fallax 360399 693cf88b7f57bcc7a3532a6b7ff0268a CCA

ITS1-
long

DQ297392.1 Phytoph-
thora

fallax 360399 da7ff4ae11bdb6cc2b8c2aea3937481f CCA

The final columns give the amplicon marker sequence and its MD5 checksum.

Adding -m or --minimal to the command gives instead:

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
-g Phytophthora -s fallax -o P_fallax.tsv -m

Wrote 2 txt format entries to 'P_fallax.tsv'
$ cut -c 1-56 P_fallax.tsv
<SEE TABLE BELOW>

Now the table only has one data row per unique marker sequence, again showing this with the sequence truncated:

#MD5 Species Sequence
693cf88b7f57bcc7a3532a6b7ff0268a Phytophthora fallax CCA
da7ff4ae11bdb6cc2b8c2aea3937481f Phytophthora fallax CCA

Alternatively, we can ask for FASTA output:

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
-g Phytophthora -s fallax -f fasta -o P_fallax.fasta

Wrote 2 fasta format entries to 'P_fallax.fasta'

This produces a short FASTA file as follows (with line wrapping added for display):

$ cat P_fallax.fasta
>DQ297398.1 Phytophthora fallax taxid=360399;HQ261557.1 Phytophthora fallax
taxid=360399;HQ261558.1 Phytophthora fallax taxid=360399;HQ261559.1 Phytophthora
fallax taxid=360399
CCACACCTAAAAAAATTCCACGTGAACTGTATTGTCAACCAAATTCGGGGATTCCTTGCTAGCGTGCCTTCGGGCGTGCC
GGTAGGTTGAGACCCATCAAACGAAAACATCGGCTGAAAGGTCGGAGCCAGTAGTTACCTTTGTAAACCCTTTACTAAAT
ACTGAAAAACTGTGGGGACGAAAGTCCTTGCTTTTACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC
>DQ297392.1 Phytophthora fallax taxid=360399
CCACACCTTAAAAAATTCCACGTGAACTGTATTGTCAACCAAATTCGGGGATTCCTTGCTAGCGTGCCTTCGGGCGTGCC
GGTAGGTTGAGACCCATCAAACGAAAACATCGGCTGAAAGGTCGGAGCCAGTAGTTACCTTTGTAAACCCTTTACTAAAT
ACTGAAAAACTGTGGGGACGAAAGTCCTTGCTTTTACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC

To be clear, each FASTA record is written as two potentially very long lines. The first title line consists of the FASTA
new record > marker and then four semi-colon separated accessions with species. The sequence shared by those four
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entries is given on the second line (without line breaks as markers tend not to be overly long, and it facilitates command
line analysis/debugging).

Using the optional -m or --minimal switch changes the FASTA output to:

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
-g Phytophthora -s fallax -f fasta -o P_fallax_minimal.fasta -m

Wrote 2 fasta format entries to 'P_fallax_minimal.fasta'
$ cat P_fallax_minimal.fasta
>693cf88b7f57bcc7a3532a6b7ff0268a Phytophthora fallax
CCACACCTAAAAAAATTCCACGTGAACTGTATTGTCAACCAAATTCGGGGATTCCTTGCTAGCGTGCCTTCGGGCGTGCC
GGTAGGTTGAGACCCATCAAACGAAAACATCGGCTGAAAGGTCGGAGCCAGTAGTTACCTTTGTAAACCCTTTACTAAAT
ACTGAAAAACTGTGGGGACGAAAGTCCTTGCTTTTACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC
>da7ff4ae11bdb6cc2b8c2aea3937481f Phytophthora fallax
CCACACCTTAAAAAATTCCACGTGAACTGTATTGTCAACCAAATTCGGGGATTCCTTGCTAGCGTGCCTTCGGGCGTGCC
GGTAGGTTGAGACCCATCAAACGAAAACATCGGCTGAAAGGTCGGAGCCAGTAGTTACCTTTGTAAACCCTTTACTAAAT
ACTGAAAAACTGTGGGGACGAAAGTCCTTGCTTTTACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC

This discards the original accessions and instead uses >, MD5 checksum, space, semi-colon separated list of taxonomic
assignments, new line, sequence, new line. Again, there is deliberately no sequence line wrapping in the file itself.

Edit graph

In the worked example with the default database, we introduced the edit-graph command for use with CytoScape
to examine the sequence space of the samples. It can also be run on a database alone provided you include the -k or
--marker switch:

$ thapbi_pict edit-graph -k ITS1-long \
-d Redekar_et_al_2019_sup_table_3.sqlite \
-o Redekar_et_al_2019_sup_table_3.xgmml

Loaded 838 unique ITS1-long sequences from DB.
Computed Levenshtein edit distances.
Will draw 533 nodes with at least one edge (305 are isolated sequences).

Of the 838 unique sequences in the database, just over three hundred are isolated sequences (over 3bp edits away from
anything else). The remaining five hundred plus give us an interesting edit distance graph.

Opening this in CytoScape the first thing that struck me was the largest two components are both for Pythium regulare
- suggesting if these are truly all from one species that it has at least two distinct ITS1 markers in the genome?

Another use of this view would be to consider the genus conflicts reported by the thapbi_pict conflicts command
- most of the handful of Lagenidium and Brevilegnia nodes are isolated.

4.2.7 Pipeline with custom database

Running thapbi-pict pipeline

Compared to the original worked example, we must specify our custom database (which contains the primer informa-
tion, and matching primer trimmed entries):

$ mkdir -p intermediate_long/ summary/
$ thapbi_pict pipeline -i raw_data/ -s intermediate_long/ \
-o summary/recycled-water-custom \
-d Redekar_et_al_2019_sup_table_3.sqlite -m onebp \

(continues on next page)

4.2. Environmental Oomycetes ITS1 57



THAPBI PICT, Release 1.0.13

(continued from previous page)

-t metadata.tsv -x 7 -c 1,2,3,4,5,6
...
onebp classifier assigned species/genus to 529 of 3053 unique sequences from 1 files
Wrote summary/recycled-water-custom.ITS1-long.samples.onebp.*
Wrote summary/recycled-water-custom.ITS1-long.reads.onebp.*
...
$ ls -1 summary/recycled-water-custom.*.onebp.*
summary/recycled-water-custom.ITS1-long.onebp.tsv
summary/recycled-water-custom.ITS1-long.reads.onebp.tsv
summary/recycled-water-custom.ITS1-long.reads.onebp.xlsx
summary/recycled-water-custom.ITS1-long.samples.onebp.tsv
summary/recycled-water-custom.ITS1-long.samples.onebp.xlsx

Note the classifier method was set explicitly with -m (or --method), using the default of onebp. With the narrower
set of Phytophthora sequences and comparatively well sampled database, that was a good default. Recall running with
the Phytophthora defaults gave a taxonomic assignment for 2122757 of 2598566 reads - which was 82% of 2.6 million
reads.

Here with our relatively sparse database, the onebp method is perhaps overly strict - only 17% of the unique sequences
matched (529 of 3053 ASVs), although it is more like a third if we count the number of reads matched. However, with
the different primer settings, we are examining over ten million reads (nearly four times as many), so we’re doing about
twice as well in terms of number of raw reads with a classification.

Naturally the more lenient or fuzzy blast based classifier makes even more matches:

$ thapbi_pict pipeline -i raw_data/ -s intermediate_long/ \
-o summary/recycled-water-custom \
-d Redekar_et_al_2019_sup_table_3.sqlite -m blast \
-t metadata.tsv -x 7 -c 1,2,3,4,5,6

...
blast classifier assigned species/genus to 1036 of 3053 unique sequences from 1 files
Wrote summary/recycled-water-custom.ITS1-long.samples.blast.*
Wrote summary/recycled-water-custom.ITS1-long.reads.blast.*
...
$ ls -1 summary/recycled-water-custom.*.blast.*
summary/recycled-water-custom.ITS1-long.blast.tsv
summary/recycled-water-custom.ITS1-long.reads.blast.tsv
summary/recycled-water-custom.ITS1-long.reads.blast.xlsx
summary/recycled-water-custom.ITS1-long.samples.blast.tsv
summary/recycled-water-custom.ITS1-long.samples.blast.xlsx

Better, in that we are up to 34% of the unique sequences with a taxonomic assignment (1036 of 3053 ASVs). But how
many of these are false positives? Sadly, we don’t have any controls for this dataset in order to objectively assess the
classifier performance of the various algorithm and database combinations.

However we can say that this database and indeed the published Oomycetes ITS1 sequences in general is relatively
sparse outside Phytophthora (and even there, we as a community have room for improvement).
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Results

We will focus on the same four low diversity samples for a brief comparison of the defaults, custom DB with onebp,
and custom DB with blast.

Previously with the default DB and default onebp classifier:

$ cut -f 6,7,8 summary/recycled-water-defaults.ITS1.samples.onebp.tsv \
| grep -E "(SRR6303586|SRR6303586|SRR6303588|SRR6303596|SRR6303948)"

OSU482 SRR6303588 Phytophthora chlamydospora, Phytophthora x stagnum(*), Unknown
OSU483 SRR6303586 Phytophthora chlamydospora, Phytophthora x stagnum(*)
OSU536.s203 SRR6303948 Phytophthora ramorum
OSU121 SRR6303596 Phytopythium (unknown species)

With the custom DB:

$ cut -f 6,7,8 summary/recycled-water-custom.ITS1-long.samples.onebp.tsv \
| grep -E "(SRR6303586|SRR6303586|SRR6303588|SRR6303596|SRR6303948)"

OSU482 SRR6303588 Phytophthora chlamydospora, Phytophthora sp. CAL-2011b(*)
OSU483 SRR6303586 Phytophthora chlamydospora, Phytophthora sp. CAL-2011b(*)
OSU536.s203 SRR6303948 Phytophthora ramorum, Unknown
OSU121 SRR6303596 Phytopythium litorale, Pythium aff. diclinum(*), Pythium aff.␣
→˓dictyosporum(*), Pythium aff. dissotocum(*), Pythium cf. dictyosporum(*), Pythium␣
→˓coloratum(*), Pythium diclinum(*), Pythium dissotocum(*), Pythium lutarium, Pythium sp.
→˓ CAL-2011f(*), Pythium sp. group F(*)

We get the same using the top BLAST hit:

$ cut -f 6,7,8 summary/recycled-water-custom.ITS1-long.samples.blast.tsv \
| grep -E "(SRR6303586|SRR6303586|SRR6303588|SRR6303596|SRR6303948)"

OSU482 SRR6303588 Phytophthora chlamydospora, Phytophthora sp. CAL-2011b(*)
OSU483 SRR6303586 Phytophthora chlamydospora, Phytophthora sp. CAL-2011b(*)
OSU536.s203 SRR6303948 Phytophthora ramorum, Unknown
OSU121 SRR6303596 Phytopythium litorale, Pythium aff. diclinum(*), Pythium aff.␣
→˓dictyosporum(*), Pythium aff. dissotocum(*), Pythium cf. dictyosporum(*), Pythium␣
→˓coloratum(*), Pythium diclinum(*), Pythium dissotocum(*), Pythium lutarium, Pythium sp.
→˓ CAL-2011f(*), Pythium sp. group F(*)

On this subset using onebp versus blast seems not to matter. The sample report does not go down to the sequences in
each sample, for that you can use the reads report, or look at the intermediate FASTA files as discussed in the previous
primers section.

The first two example differ due to the DB curation about exactly which Phytophthora is present. Sample OSU121
aka SRR6303596 went from one Phytopythium litorale sequence to being joined by a much more numerous Pythium
coloratum/dissotocum sequence (plus some lower abundance variants of it). Likewise, OSU536.s203 aka SRR6303948
had one sequence for Phytophthora ramorum, but now has multiple unknown sequences.
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4.3 Drained fish ponds 12S

This example uses a single 12S marker applied to fishing ponds which were later drained allowing identification of all
the individual fish present:

Muri et al. (2020) Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance
and biomass in drained ponds. https://doi.org/10.3897/mbmg.4.56959

We provide a crude 12S database containing fish and off-target mammal and bird matches.

4.3.1 Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest source code release (.tar.gz file).
You should find it contains a directory examples/drained_ponds/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis discussed.

FASTQ data

File PRJNA638011.tsv was download from the ENA and includes the FASTQ checksums, URLs, and sample meta-
data. Related file metadata.tsv combines this with metadata about the samples from the paper (see below).

Script setup.sh will download the raw FASTQ files for Muri et al. (2020) from https://www.ebi.ac.uk/ena/data/view/
PRJNA638011 - you could also use https://www.ncbi.nlm.nih.gov/bioproject/PRJNA638011/

It will download 198 raw FASTQ files (99 pairs), taking about 550MB on disk

If you have the md5sum tool installed (standard on Linux), verify the FASTQ files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
$ cd ..

There is no need to decompress the files.

Amplicon primers & reference sequences

A region of 12S was amplified using a previously published primer pair (ACTGGGATTAGATACCCC and
TAGAACAGGCTCCTCTAG) described here:

Kelly et al. (2014) Understanding PCR processes to draw meaningful conclusions from environmental
DNA studies. https://doi.org/10.1038/s41598-019-48546-x

This primer amplifies not just the fish of interest, but also birds and mammals (including human).

Rather than trying to use the same curated database from the University of Hull Evolutionary and Environmental
Genomics Group, who also wrote metaBEAT (metaBarcoding and Environmental Analysis Tool) which was used in the
paper, we provide a crudely curated database culled from stringent BLASTN matches in the NCBI NT database (search
run with 100% query coverage and 99% identity, see provided scripts/blast_to_fasta.py), as file NCBI_12S.
fasta. The run.sh script starts by loading this into a new THAPBI PICT database.
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Metadata

The provided file metadata.tsv has ten columns, the first three are from PRJNA638011.tsv (ENA metadata) and
the rest from the paper’s Supplementary Table S2 - cross referenced on the sample name/alias:

1. run_accession, from ENA metadata, e.g. “SRR11949879”

2. sample_alias, from ENA metadata, e.g. “Lib3-M3-1F1”

3. sample_title, from ENA metadata, e.g. “MCE-Sample 1 filter 1”

4. samples, from Supplementary Table S2, e.g. “M3-1F1”

5. lake, from Table S2, e.g. “Middle_lake”

6. filter, from Table S2, e.g. “MCE”

7. treatment, from Table S2, e.g. “F1”

8. extracted, from Table S2, e.g. “Filter”

9. control, from Table S2, either “”, “blank”, “negative”, or “positive”

10. date, from Table S2, e.g. “17.02.2017”

When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 5,6,7,8,9,10,4,3

Argument -t metadata.tsv says to use this file for the metadata.

The -x 1 argument indicates the filename stem can be found in column 1, the ENA assigned run accession.

Argument -c 5,6,7,8,9,10,4,3 says which columns to display and sort by (do not include the indexed column
again). If for example the accession was listed first, it would be sorted on that, which is not helpful here. If you prefer
to sort on filter first, that change should be straightforward.

We have not given a -g argument to assign colour bands in the Excel reports, so it will default to the first column in
-c, meaning we get three coloured bands for “Middle_lake”, “NA” (controls), and “New_lake”.

Other files

Files cichlid_control.known.tsv and negative_control.known.tsv and are used in setup.sh to create
expected/*.known.tsv entries for the positive and negative controls, including the blank controls.

12 fish species were translocated to New Lake, of which nine were also in the middle lake. Referring to the results text
and Figure 1B, and pooling the two observed hybrids with a parent species, the expected species in the two lakes are
as follows.

Middle lake and new lake both had:

• Abramis brama

• Barbus barbus

• Carassius carassius

• Cyprinus carpio

• Perca fluviatilis

• Rutilus rutilus

• Scardinius erythrophthalmus
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• Squalius cephalus

• Tinca tinca

New lake only also had:

• Acipenser spp.

• Ctenopharyngodon idella

• Silurus glanis

File middle_lake.known.tsv lists the 9 species found in the middle lake, and new_lake.known.tsv lists the 12
species in the new lake (although not all fish are expected at all sites within each lake), and these are assigned to the
remaining samples as expected/*.known.tsv by running setup.sh.

4.3.2 Presence and absence

Controls

Quoting the Muri et al. (2020) paper:

A low-frequency noise threshold of 0.001 (0.1%) was applied across the dataset to reduce the probability
of false positives arising from cross-contamination or tag-jumping (De Barba et al. 2014; Hänfling et
al. 2016). Based on the level of contamination found in sampling/filtration blanks and PCR negatives,
a second arbitrary threshold was applied and all records occurring with less than 50 reads assigned were
removed.

To match the paper, this example uses -a 50 for an absolute threshold of 50, and -f 0.001 for a 0.1% sample specific
factional threshold.

At this threshold, the 4 cichlid “positive” samples, 6 PCR “negative”, and 8 “blank” controls are perfect - as far as the
fish go. We do see unexpected human and chicken reads in the PCR negatives, and also ducks, cattle and pigs in the
field “blanks”:

$ grep -E "(^#|positive|negative|blank)" summary/drained_ponds.12S.samples.onebp.tsv |␣
→˓cut -f 5,10-11,16,19
<SEE TABLE BELOW>

Or, filter/search summary/drained_ponds.12S.samples.onebp.tsv in Excel:
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control Sequencing sam-
ple

Classification
summary

Threshold Accepted

blank SRR11949861 • 50 0

blank SRR11949885 • 50 0

blank SRR11949884 (Off-target) Homo
sapiens, (Off-target)
Sus scrofa

50 544

blank SRR11949883 (Off-target) Bos
taurus, (Off-target)
Homo sapiens, (Off-
target) Sus scrofa

50 1629

blank SRR11949882 (Off-target) Anati-
dae (waterfowl)

50 61

blank SRR11949881 (Off-target) Homo
sapiens

50 56

blank SRR11949880 (Off-target) Anati-
dae (waterfowl),
(Off-target) Homo
sapiens

50 436

blank SRR11949834 (Off-target) Homo
sapiens

50 175

negative SRR11949908 • 50 0

negative SRR11949907 (Off-target) Gallus
gallus, (Off-target)
Homo sapiens

50 606

negative SRR11949851 • 50 0

negative SRR11949850 • 50 0

negative SRR11949838 (Off-target) Homo
sapiens

50 71

negative SRR11949837 (Off-target) Homo
sapiens

50 356

positive SRR11949836 Astatotilapia cal-
liptera(*), Maylan-
dia zebra(*)

50 39748

positive SRR11949835 Astatotilapia cal-
liptera(*), Maylan-
dia zebra(*)

50 39244

positive SRR11949906 Astatotilapia cal-
liptera(*), Maylan-
dia zebra(*)

65 62249

positive SRR11949849 Astatotilapia cal-
liptera(*), Maylan-
dia zebra(*)

50 24566

Only in one sample (SRR11949906, a positive control) was the percentage based abundance threshold stricter than the
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absolute threshold (65 not 50), and it still gives the highest number of reads.

Note that the positive samples only yield a single unique sequence (MD5 checksum
17dbc1c331d17cd075aabd6f710a039b) which matches both the cichlid control species Astatotilapia calliptera and
Maylandia zebra.

High level overview

Looking over summary/drained_ponds.12S.samples.onebp.xlsx in Excel, or the TSV equivalent of the sample
report, there are some general trends visible.

First, as noted above the controls are extremely clean with just the expected cichlid species for the positive controls,
and a few off-target matches in the PCR negatives and field blanks as noted above.

Next, both the Middle Lake Sterivex Ethanol Buffer, and Middle Lake Sterivex RNAlater Buffer are very clean. There
are traces of human and waterfowl, and but only three of these buffer samples shows any fish (eg SRR11949911 aka
5RNB). In contrast, most of the Middle Lake Sterivex Longmire Buffer samples do give fish reads.

Controls and buffers aside, all the field samples gave Anatidae (waterfowl) matches, most had human. There were
traces of other birds and mammals such as pig and dog - with most of the new lake samples showing sheep (Ovis).

As to the fish, we see strong signal in most samples for Abramis brama, Carassius carassius, Cyprinus carpio, Rutilus
rutilus and Tinca tinca.

Expected Fish

This paper was selected as an example because something is known about the expected content of all the biological
samples - the lakes were drained and all the fish identified, counted and weighed. However, we cannot expect all the
species present to have left DNA at all the sampling points within their lake, but that is a useful approximation for
assessing the classifier:

$ cut -f 1-5,9,11 summary/drained_ponds.12S.assess.onebp.tsv
<SEE TABLE BELOW>

You might prefer to open this in Excel:

#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 433 388 331 5877 0.55 0.624
(Off-target) Anatidae (waterfowl) 0 70 0 29 0.00 1.000
(Off-target) Apodemus 0 4 0 95 0.00 1.000
(Off-target) Ardea cinerea 0 11 0 88 0.00 1.000
(Off-target) Bos taurus 0 3 0 96 0.00 1.000
(Off-target) Canis lupus familiaris 0 7 0 92 0.00 1.000
(Off-target) Capra hircus 0 1 0 98 0.00 1.000
(Off-target) Columba 0 47 0 52 0.00 1.000
(Off-target) Gallinula chloropus 0 50 0 49 0.00 1.000
(Off-target) Gallus gallus 0 13 0 86 0.00 1.000
(Off-target) Homo sapiens 0 83 0 16 0.00 1.000
(Off-target) Ovis aries 0 17 0 82 0.00 1.000
(Off-target) Ovis dalli 0 1 0 98 0.00 1.000
(Off-target) Phalacrocorax carbo 0 25 0 74 0.00 1.000
(Off-target) Sturnus 0 3 0 96 0.00 1.000
(Off-target) Sus scrofa 0 16 0 83 0.00 1.000

continues on next page
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Table 1 – continued from previous page
#Species TP FP FN TN F1 Ad-hoc-loss
(Off-target) Turdus 0 7 0 92 0.00 1.000
Abramis brama 65 0 16 18 0.89 0.198
Acipenser spp. 0 0 9 90 0.00 1.000
Alburnus mossulensis 0 1 0 98 0.00 1.000
Astatotilapia calliptera 4 0 0 95 1.00 0.000
Barbus barbus 46 0 35 18 0.72 0.432
Carassius carassius 64 0 17 18 0.88 0.210
Ctenopharyngodon idella 3 15 6 75 0.22 0.875
Cyprinus carpio 61 0 20 18 0.86 0.247
Maylandia zebra 4 0 0 95 1.00 0.000
Perca fluviatilis 40 0 41 18 0.66 0.506
Pseudorasbora parva 0 2 0 97 0.00 1.000
Rutilus rutilus 63 0 18 18 0.88 0.222
Scardinius erythrophthalmus 6 0 75 18 0.14 0.926
Silurus glanis 9 0 0 90 1.00 0.000
Spinibarbus denticulatus 0 11 0 88 0.00 1.000
Squalidus gracilis 0 1 0 98 0.00 1.000
Squalius cephalus 6 0 75 18 0.14 0.926
Tinca tinca 62 0 19 18 0.87 0.235
OTHER 37 SPECIES IN DB 0 0 0 3663 0.00 0.000

False positives

We touched on the assorted “false positives” from the off-target 12S PCR amplification above. What is more interesting
is the fish false positives. Let’s look at these starting with the most false positives.

Ctenopharyngodon idella

First, many middle lake samples unexpectedly have Ctenopharyngodon idella (this is expected in the new lake samples).
Why? They all stem from sequence 285edce3d193c92b1959e60bc130b518 which was matched to both C. idella
and Tinca tinca (expected in both lakes):

>285edce3d193c92b1959e60bc130b518
ACTATGCTCAGCCATAAACCTAGACATCCACCTACAATTAAACGTCCGCCCGGGTACTACGAGCATTAGCTTGAAACCCA
AAGGACCTGACGGTGCCTTAGACCCCC

This is both a one base pair edit away from AY897013.1 etc as C. idella, and from AB218686.1 etc as T. tinca. Re-
viewing the NCBI BLAST matches both sets of species are supported from multiple complete mitochondrion genomes
and a range of research groups. In the context of this experiment, we could infer for the four middle lake samples this
sequence was T. tinca.
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Spinibarbus denticulatus

Next, we see 16 samples with unexpected cyprinid fish Spinibarbus denticulatus. Referring to the read report, all
are from a single sequence 4c53f6ed1ecdad3af2299999ec83d756 which has been matched perfectly to both this
unexpected species and expected species Carassius carassius:

>4c53f6ed1ecdad3af2299999ec83d756
ACTATGCTCAGCCGTAAACTTAGACATCCTACTACAATAGATGTCCGCCAGGGTACTACGAGCATTAGCTTAAAACCCAA
AGGACCTGACGGTGTCTCAGACCCCC

Given the actual fish in these lakes have been taxonomically identified, we can safely dismiss this - and perhaps drop
AP013335.1 S. denticulatus from the ad-hoc DB?

A similar choice was made in compiling the ad hoc database, dropping all the Sander sp. entries for the following
sequence in favour of just Perca fluviatilis as the sole expected Percidae:

>7e88b1bdeff6b6a361cc2175f4f630fd
ACTATGCCTAGCCATAAACATTGGTAGCACACTACACCCACTACCCGCCTGGGAACTACGAGCATCAGCTTGAAACCCAA
AGGACTTGGCGGTGCTTTAGATCCAC

This was based on the authors’ choice:

All fish OTUs were identified to species level with the exceptions of records matching the family Percidae.
Percidae records were manually assigned to P. fluviatilis as this was the only species of the family identified
in the study area during fish relocation.

Pseudorasbora parva

We see two samples containing Pseudorasbora parva, the invasive species which prompted these fish ponds to be
drained as a control measure. You can find this in the read report, at the command line:

$ grep -E "(Pseudorasbora parva|samples|predictions)" \
summary/drained_ponds.12S.reads.onebp.tsv | cut -f 2,3,7,48,59

samples 2LMB 3LMF
MD5 onebp-predictions Total-abundance SRR11949854 ␣
→˓SRR11949925
e819f3c222d6493572534fb6a5b7cda7 Pseudorasbora parva 520 323 197

Specifically we saw 323 reads in SRR11949854 aka 2LMB and 197 reads in SRR11949925 aka 3LMF - both middle lake
Sterivex (STX) samples. Quoting the paper:

P. parva reads found in two Middle Lake-STX samples (279 and 148 reads) were also excluded from
further analyses as after eradication this species was not physically present at the site surveyed.

The exact counts differ, but referring to the paper’s supplementary data the sample names match.
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Other Fish

We also see one false positive for each of the two fish species Alburnus mossulensis, and Squalidus gracilis:

$ grep -E "(Alburnus mossulensis|samples|predictions)" \
summary/drained_ponds.12S.reads.onebp.tsv | cut -f 2,3,7,25

samples ␣
→˓M3-MF2
MD5 onebp-predictions Total-abundance ␣
→˓SRR11949859
916da937dccfd5d29502e83713e5d998 Abramis brama;Alburnus mossulensis 98 98

This sequence is ambiguous with equally good matches to expected species Abramis brama. Again, we might remove
Alburnus mossulensis from the DB?

$ grep -E "(Squalidus gracilis|samples|predictions)" \
summary/drained_ponds.12S.reads.onebp.tsv | cut -f 2,3,7,20

samples M3-4F2
MD5 onebp-predictions Total-abundance SRR11949871
c0d532d1c6f8ffff9c72ac4a1873151c Squalidus gracilis 82 82

This sequence match is with AP011393.1 in the provided reference set.

False negatives

The classifier assessment shown above expected all the fish in each lake to be found at all the sites within that lake - an
overly strong assertion which could explain many of the reported false negatives.

However, there is one clear false negative - neither this nor the original analysis found any Acipenser spp.

True positives

Rather than reviewing all of the true positives, I will note that in some cases we found more reads and thus declared a
result in more samples. For example, we report Barbus barbus in 49 samples, versus:

In addition, Barbus barbus was detected at two sites (202 reads), . . .

We found Scardinius erythrophthalmus in six samples:

$ grep -E "(Scardinius erythrophthalmus|samples|predictions)" \
summary/drained_ponds.12S.reads.onebp.tsv | cut -f 7,8,12,13,83,84,85

samples M3-1F1 M3-5F1 M3-6F1 7RNF 8RNF MRNF
Total-abundance SRR11949879 SRR11949870 SRR11949868 SRR11949893 SRR11949886 ␣
→˓SRR11949852
761 156 120 147 136 76 126

Quoting the original paper:

The presence of Scardinius erythrophthalmus was found at two sites with a low number of reads (38 and
25 reads) and, therefore, removed after applying the filter threshold

In these cases at least, we are seeing much higher read counts. Given the supplementary data provided, it could be
possible to plot the read counts from the two methods against each other.
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Conclusion

While not in-depth, this hopefully demonstrates the THAPBI PICT could be meaningfully applied to this 12S dataset
which was originally analysed with metaBEAT v0.97.11.

4.4 Fungal Mock Community ITS1 & 2

Here we consider mock communities of 19 fungal sequences (in both equal and staggered ratios), prepared with various
protocols, and negative controls.

This example is based on the two amplicon sequencing libraries from this paper:

Bakker (2018) A fungal mock community control for amplicon sequencing experiments. https://doi.org/
10.1111/1755-0998.12760

The first library used a single primer set targeting ITS1, while the second library used two sets of primers targeting a
different region of ITS1, and ITS2.

4.4.1 Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest source code release (.tar.gz file).
You should find it contains a directory examples/fungal_mock/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis discussed.

FASTQ data

File PRJNA377530.tsv was download from the ENA and includes the FASTQ checksums, URLs, and sample meta-
data.

Script setup.sh will download the raw FASTQ files for Bakker (2018) from https://www.ebi.ac.uk/ena/data/view/
PRJNA377530

It will download 122 raw FASTQ files (61 pairs), taking 346MB on disk.

If you have the md5sum tool installed (standard on Linux), verify the FASTQ files downloaded correctly:

$ cd raw_data/AL1/
$ md5sum -c MD5SUM.txt
...
$ cd ../../

$ cd raw_data/AL1/
$ md5sum -c MD5SUM.txt
...
$ cd ../../

There is no need to decompress the files.
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Amplicon primers & reference sequences

Amplicon library one (AL1) amplified a small region of ITS1 using primer pair BITS/B58S3 (ACCTGCGGARGGATC and
GAGATCCRTTGYTRAAAGTT), as shown in the paper’s supplementary Table S4.

Amplicon library two (AL2) amplified a larger region of ITS1 using primer pair ITS1f/ITS2
(CTTGGTCATTTAGAGGAAGTAA and GCTGCGTTCTTCATCGATGC), which includes the first library’s target region
entirely. Similar yields as per supplementary Table S4 vs S5.

Additionally, amplicon library two (AL2) amplified ITS2 using primer pair ITS3-KYO2 with ITS4-KYO3
(GATGAAGAACGYAGYRAA and CTBTTVCCKCTTCACTCG), with lower yields as per supplementary Table S5 vs S6.

The example must run THAPBI PICT twice. First using a single-marker database for AL1 using the BITS/B58S3
primers, and then with a dual-marker database for AL2 using the ITS1f/ITS2 and ITS3-KYO2/ITS4-KYO3 primers. In
fact the example runs it third time, as we can also try the BITS/B58S3 primers on the second amplicon library, because
they amplify a subregion of what the ITS1f/ITS2 pair amplify. See the primer discussion on the similar Redekar et al.
(2019) worked example.

Files ITS1.fasta and ITS2.fasta were extracted from supplementary materials appendix S2, with the species name
alone added to the FASTA titles (for input to thapbi_pict import with primer trimming).

Metadata

The amplicon specific files metadata_AL1.tsv and metadata_AL2.tsv are based on the metadata downloaded from
the ENA, with some reformatting. The split into amplicon one and two was based on supplementary Tables S4, S5 and
S6 (for the mock community samples) and reading the paper (for placing the negative controls).

They have seven columns:

1. Accession, assigned by the public archive, e.g. “SRR5314337”

2. MiSeq-name, author’s filename stem, e.g. “FMockE.HC_S190”

3. Condition, based on original name without replicate suffix, e.g. “MockE_HC”

4. Replicate, numeric, e.g. “1”

5. Sample-type, either “fungal mock community” or “negative control”

6. Group, e.g. “even” or “staggered A”

7. Protocol, e.g. “high PCR cycle number” or “standard workflow”

When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata_AL1.tsv -c 5,6,7,3,4,2 -x 1 -g 6
$ thapbi_pict ... -t metadata_AL2.tsv -c 5,6,7,3,4,2 -x 1 -g 6

Argument -t metadata.tsv says to use this file for the metadata.

Argument -c 5,6,7,3,4,2 says which columns to display and sort by. This means Sample-type, Group, Protocol,
Condition, Replicate, MiSeq Name. The purpose here is to group the samples logically (sorting on accession or MiSeq
Name would not work), and suitable for group colouring.

Argument -x 1 (default, so not needed) indicates the filename stem can be found in column 1, Accession. We might
have downloaded the files and used the author original names, in which case -x 2 ought to work.

Argument -g 6 means assign colour bands using column 6, Group. This is used in the Excel reports.

4.4. Fungal Mock Community ITS1 & 2 69



THAPBI PICT, Release 1.0.13

Other files

The provided negative_control.known.tsv and mock_community.known.tsv files lists the expected species in
the negative controls (none) and the mock community samples (the same 19 species, although not always in equal
ratios).

Sub-folders under intermediate/ are used for intermediate files, a folder for each amplicon library (AL1 and AL2)
and primer-pair combination.

4.4.2 Community Edit Graphs

The sequence Edit Graph is very useful for understanding what came off the sequencer - although you may need to
play with the thresholds to find a sweet spot for hiding the noise.

My main conclusion from the figures below is that the THAPBI PICT default onebp classifier is reasonable for these
fungal communities markers. However, for the ITS1 marker Fusarium needs closer examination, and there should be
even more database entries for Rhizomucor irregularis. You would of course also need to expand the database beyond
the 19 species in the mock community to use these ITS1 or ITS2 fungal markers more generally.

Image generation

If you have loaded an XGMML network file from THAPBI PICT into Cytoscape, you can interactively select nodes
based on the Max-sample-abundance attribute and hide or remove them. This is helpful for exploring what minimum
threshold to use for drawing a clear edit graph, but this does not update the Sample-count and node sizes which are
based on it.

For that you can re-run thapbi_pict edit-graph with the higher sample level minimum abundance setting (-a or
--abundance). You do not need to regenerate the intermediate per-sample FASTA files unless you want to use a lower
threshold.

The following figures are from the example script run.sh which called thapbi_pict edit-graph with -a 75,
meaning a unique sequence had to be in a sample from at least 75 reads to be considered. Using a lower value gives a
much noiser picture (see the Halo effect discussed earlier).

Additionally this used -k (or --marker) to force including all of the database sequences (dark red nodes), as some did
not appear in the samples (shown as the smallest dark red dots, typically the bottom row of the image). And, it used
-m - (or --method -) to deliberately not label the nodes with the classifier output - only the data entries get a species
label.

The XGMML files were loaded, automatically laid out using the “Perfuse Force Directed Layout” menu, manually
adjusted to give a reasonably consistent node placement for comparison between the figures, and then images exported
in SVG format (other formats are also supported including PDF and PNG).

Amplicon library one - ITS1

Starting with amplicon library one, where the BITS/B58S3 primers were used for a short fragment of ITS1.
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This is from file AL1.BITS_B58S3.edit-graph.a75.xgmml created by run.sh.

The dark red nodes represent sequences in the database - given how this database was constructed to match the mock
community, we would hope to see all the database entries represented in the samples. Some are missing at this abun-
dance threshold (four bottom row entries Saccharomyces cerevisiae, Ustilago maydis, Rhizomucor miehei and Chytri-
omyces hyalinus, plus the four Rhizomucor irregularis entries shown across the middle.

The large red nodes are the well represented community members, starting with Naganishia albida shown top left,
which has four different 1bp variants some of which are large meaning they appear in many samples - you can see the
sample counts in you load the XGMML file for this graph in Cytoscape. These are common enough to suggest they
could be alternative versions of the ITS1 region in the genomes of these community members?

The (sometimes large) grey nodes not connected to a red node represent unwanted reads, likely contaminations dis-
cussed later.

In general each species is represented by a single connected component. The exceptions are Rhizomucor irregularis
(multiple distantly related entries) and the Fusarium. The expected sequence for Fusarium verticillioides was not
seen at all, however there are a great many copies one base away from the expected Fusarium oxysporum sequence
(abbreviated MD5 checksum bb28f2, in full bb28f2b57f8fddefe6e7b5d01eca8aea). Is this perhaps coming from
the Fusarium verticillioides strain?
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Amplicon library two - ITS1

First, analysed using the same BITS/B58S3 primers as for ITS1 as in amplicon library one - the unique sequence MD5
checksums overlap with those seen in amplicon one:

This is from file AL2.BITS_B58S3.edit-graph.a75.xgmml created by run.sh.

Broadly the same as from amplicon library one, but notice the presence/absence patterns are different. Also there are
more variants of the bb28f2 Fusarium, and a pair of unexpected grey nodes 3bp apart (e055cb and ee5482, middle
left, discussed below).

Now, using the actual primer pair, ITS1f/ITS2, which give a longer ITS1 fragment. Note that the sequences are extended
so the checksums are different to those in the preceding images, but again broadly the same picture as the two images
above:
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This is from file AL2.ITS1f_ITS2.edit-graph.a75.xgmml created by run.sh.

The curious large grey node one edit away from Fusarium oxysporum has abbreviated MD5 checksum f1b689,
or in full f1b689ef7d0db7b0d303e9c9206ee5ad (given in the XGMML node attributes). Referring back
to the intermediate FASTA files or the read report, this does indeed represent the extended version of
bb28f2b57f8fddefe6e7b5d01eca8aea with the first primer set:

>bb28f2b57f8fddefe6e7b5d01eca8aea
ATTACCGAGTTTACAACTCCCAAACCCCTGTGAACATACCAATTGTTGCCTCGGCGGATCAGCCCGCTCCCGGTAAAACG
GGACGGCCCGCCAGAGGACCCCTAAACTCTGTTTCTATATGTAACTTCTGAGTAAAACCATAAATAAATCAA

>f1b689ef7d0db7b0d303e9c9206ee5ad
AAGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACCGAGTTTACAACTCCCAAACCCCTGTGAACATA
CCAATTGTTGCCTCGGCGGATCAGCCCGCTCCCGGTAAAACGGGACGGCCCGCCAGAGGACCCCTAAACTCTGTTTCTAT
ATGTAACTTCTGAGTAAAACCATAAATAAATCAAAACTTTCAACAACGGATCTCTTGGTTCTG

Using an NCBI BLAST search, this exact sequence has been published from over a dozen different Fusarium species
including Fusarium oxysporum, but not at the time of writing from Fusarium verticillioides.

The small pair of grey nodes 3bp apart (long diagonal line, middle left), 57b06d and 05007e, are the extended equiv-
alents of e055cb and ee5482 shown in the same place in the previous image. They seem to match glomeromycetes,
perhaps from the Rhizophagus in the mock community.
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Amplicon library two - ITS2

Finally, amplicon library two using the ITS3-KYO and ITS4-KYO3 primers for ITS2:

This is from file AL2.ITS3-KYO2_ITS4-KYO3.edit-graph.a75.xgmml created by run.sh.

Some more noteworthy changes to presence/absence, including much more Saccharomyces cerevisiae (still drawn
bottom left). Also there are no unexpected grey nodes, and perhaps most interestingly from a species classification
point of view, now the three Fusarium species fall into separate connected components.
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4.4.3 Presence and absence

This example is a controlled setup where we know what the classifier ought ideally to report for every single sample.

We have replicated negative controls (which should have no marker sequences present), and plenty of positive controls
(which should have the expected 19 species only).

Of course, just as in the original author’s analysis, not everything we think was present is detected, and vice versa,
lots of unwanted things are detected. These kinds of controls are perfect for discussing what to use as a minimum
abundance threshold - how many reads do we need to declare a species as present in a sample?

Negative controls

If you have called the provided setup.py to download the FASTQ files and run.py to call THAPBI PICT, it would
have used an optimistic minimum abundance threshold of 10 copies of each unique sequence (the default is a far more
pesimitic 100).

This is not a good idea in general, but for your negative controls it can be interesting to deliberately set no threshold,
and accept any sequence even if only supported by one read.

(Be sure to remove the intermediate FASTA files if you try this, as otherwise THAPBI PICT would not replace the
older higher threshold files).

If you do this, just how bad are the contamination levels? These little tables were extracted manually from the sample
level reports run with -a 1 (accepting even sequences seen in only one read). The counts are the total number of reads
in each sample, while max is the highest single sequence’s abundance.

Amplicon library one, ITS1 using the BITS/B58S3 primer pair, samples replicated in duplicate:

Description MiSeq-name Accession Count Max
negative control from DNA extraction NegDNAA_S163 SRR5314317 112 64
negative control from DNA extraction NegDNAB_S175 SRR5314316 132 101
negative control from PCR step NegPCRA_S187 SRR5314315 1153 1085
negative control from PCR step NegPCRB_S104 SRR5314314 4343 3961

Amplicon library two, ITS1 using the ITS1f/ITS2 primer pair:

Description MiSeq-name Accession Count Max
negative control with GoTaq NegCtlGoTq_S20 SRR5838526 2 1
negative control with Phusion NegCtlPhGn_S30 SRR5838523 8 4
negative control with reAmp NegCtlPrmp_S10 SRR5838524 9 1

Amplicon library two, ITS2 using the ITS3-KYO2 and ITS4-KYO3 primer pair:

Description MiSeq-name Accession Count Max
negative control with GoTaq NegCtlGoTq_S20 SRR5838526 14 2
negative control with Phusion NegCtlPhGn_S30 SRR5838523 17 4
negative control with PreAmp NegCtlPrmp_S10 SRR5838524 5 1

Looking at these numbers the levels in amplicon library two are commendably low, at most four copies of any unique
sequence - suggesting using a minimum threshold of 10 here is quite reasonable.

Hereafter we will assume the minimum abundance threshold of 10 was used, and you are encouraged to look at the
sample or read level reports (e.g. in Excel) while following along with this discussion.
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However, the levels in amplicon library one are cause for concern. Starting with the negative control from the DNA
extraction (given a green background in the Excel reports), we see both replicates had two unwanted sequences. Look
at summary/AL1.BITS-B58S3.reads.onebp.xlsx in Excel, or the TSV version at the command line:

$ cut -f 1,2,7,35,36 summary/AL1.BITS-B58S3.reads.onebp.tsv | grep -v
→˓"[[:space:]]0[[:space:]]0$"
# Sample-type negative control ␣
→˓negative control
# Group from DNA extraction ␣
→˓from DNA extraction
# Protocol standard workflow ␣
→˓standard workflow
# Condition Neg_DNA ␣
→˓Neg_DNA
# Replicate 1 2
# MiSeq-name NegDNAA_S163 ␣
→˓NegDNAB_S175
# Raw FASTQ 12564 ␣
→˓16297
# Flash 11641 ␣
→˓15829
# Cutadapt 112 131
# Threshold pool AL1 AL1
# Threshold 10 10
# Control Sample ␣
→˓Sample
# Max non-spike 64 100
# Singletons 14 17
# Accepted 98 110
# Unique 2 2
#Marker MD5 Total-abundance SRR5314317 ␣
→˓SRR5314316
MAX or TOTAL - 881219 64 100
BITS-B58S3 d51507f661ebee38a85bec35b70b7ee1 47984 64 100
BITS-B58S3 daadc4126b5747c43511bd3be0ea2438 34 34 0
BITS-B58S3 e5b7a8b5dc0da33108cc8a881eb409f5 10 0 10

Using a minimum of 10 has excluded lots of singletons etc here.

Both have d51507f661ebee38a85bec35b70b7ee1 as their more common unwanted sequence, a perfect match to
Fusarium graminearum in the mock community (classifier summary column omitted above for a clearer layout).

The lower abundance sequence daadc4126b5747c43511bd3be0ea2438 gives perfect NCBI BLAST matches to sev-
eral accessions of fungus Wallemia muriae, likewise e5b7a8b5dc0da33108cc8a881eb409f5 gives perfect NCBI
BLAST matches to Wallemia muriae and Wallemia sebi. They have no match from the classifier.

Moving on to the worst case, the negative control from the PCR reaction (given a pale blue background in the Excel
reports). Again, look at the Excel file, or if working at the terminal:

$ cut -f 1,2,7,37,38 summary/AL1.BITS-B58S3.reads.onebp.tsv | grep -v
→˓"[[:space:]]0[[:space:]]0$"
# Sample-type negative control ␣
→˓negative control
# Group from PCR step from␣
→˓PCR step

(continues on next page)
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(continued from previous page)

# Protocol standard workflow ␣
→˓standard workflow
# Condition Neg_PCR Neg_
→˓PCR
# Replicate 1 2
# MiSeq-name NegPCRA_S187 ␣
→˓NegPCRB_S104
# Raw FASTQ 19406 7285
# Flash 12140 6128
# Cutadapt 1153 4340
# Threshold pool AL1 AL1
# Threshold 10 10
# Control Sample ␣
→˓Sample
# Max non-spike 1085 3958
# Singletons 42 127
# Accepted 1085 4014
# Unique 1 4
#Marker MD5 Total-abundance SRR5314315 ␣
→˓SRR5314314
MAX or TOTAL - 881219 1085 3958
BITS-B58S3 d51507f661ebee38a85bec35b70b7ee1 47984 1085 3958
BITS-B58S3 716f6111ac2ee192c23282e07d23078a 31294 0 25
BITS-B58S3 5194a4ae3a27d987892a8fee7b1669b9 17 0 17
BITS-B58S3 702929cef71042156acb3a28270d8831 14 0 14

The minimum abundance excluded lots of singletons etc. The vast majority of those were slight variants of the dominant
sequence, and can thus be explained as PCR noise.

Again, both samples have d51507f661ebee38a85bec35b70b7ee1 as their main (or only) unwanted sequence
above the threshold, a perfect match to Fusarium graminearum in the mock community. Additionally
716f6111ac2ee192c23282e07d23078a matched Mortierella verticillata from the mock community.

Then 5194a4ae3a27d987892a8fee7b1669b9 gives perfect NCBI BLAST matches to fungus Trichosporon asahii
and 702929cef71042156acb3a28270d8831 to fungus Candida tropicalis, which are unexpected contamination.

I concur with the author that the high levels of Fusarium graminearum are most likely cross-contamination from the
mock-community samples:

Negative control samples in this sequencing run displayed some contamination by F. graminearum. This
taxon was represented at slightly, but not dramatically, higher than expected relative abundances in the
mock community samples; some of the increase over expected relative abundance may have been related
to cross-sample contamination.

Looking at the DNA extraction control alone, the THAPBI PICT default threshold of 100 seems reasonable. However,
if we set that aside the likely Fusarium graminearum contamination, then the next worst contamination in any of these
four controls is at 32 copies, so you might argue 100 is a little harsh?

Certainly I think for amplicon library one, a threshold of 10 is too low, but it could be defended for amplicon library
two (where the controls had up to four copies of an unwanted sequence).
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Missing positive controls

We will look at the ratios later, but were all 19 species in the mock community found? Perhaps the quickest way
to answer this is to look at the classification assessment output. At the command line, looking at the BLAST based
classifier as the most fuzzy of the three:

$ cut -f 1-5,9,11 summary/AL1.BITS-B58S3.assess.blast.tsv
<SEE TABLE BELOW>

Or open this in Excel. You should find:

#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 345 5 168 71 0.80 0.334
Alternaria alternata 26 0 1 4 0.98 0.037
Aspergillus flavus 25 0 2 4 0.96 0.074
Candida apicola 27 0 0 4 1.00 0.000
Chytriomyces hyalinus 0 0 27 4 0.00 1.000
Claviceps purpurea 27 0 0 4 1.00 0.000
Fusarium graminearum 27 4 0 0 0.93 0.129
Fusarium oxysporum 27 0 0 4 1.00 0.000
Fusarium verticillioides 0 0 27 4 0.00 1.000
Mortierella verticillata 27 1 0 3 0.98 0.036
Naganishia albida 27 0 0 4 1.00 0.000
Neosartorya fischeri 24 0 3 4 0.94 0.111
Penicillium expansum 22 0 5 4 0.90 0.185
Rhizoctonia solani 19 0 8 4 0.83 0.296
Rhizomucor miehei 0 0 27 4 0.00 1.000
Rhizophagus irregularis 13 0 14 4 0.65 0.519
Saccharomyces cerevisiae 0 0 27 4 0.00 1.000
Saitoella complicata 27 0 0 4 1.00 0.000
Trichoderma reesei 27 0 0 4 1.00 0.000
Ustilago maydis 0 0 27 4 0.00 1.000

Or, open this plain text tab separated Excel.

Five expected species were never found (FN with zero true positives) at the 10 reads abundance threshold: Chytriomyces
hyalinus, Fusarium verticillioides, Rhizomucor miehei, Saccharomyces cerevisiae and Ustilago maydis.

The author wrote:

Two of the expected 19 phylotypes, Fusarium verticillioides and Saccharomyces cerevisiae, were not de-
tected in any of the samples. A large number of reads, presumably including many F. verticillioides reads,
were binned into a phylotype as unclassified Fusarium. The primers used in ITS1 amplification for this
sequencing library match the rRNA gene sequence of S. cerevisiae. However, the expected ITS1 ampli-
con length is 402 bases for this taxon, compared to a range of 141-330 bases across the remaining taxa in
the mock community. Examining the data at earlier stages of processing revealed that S. cerevisiae was
originally represented in the data set, but was completely removed during quality screening (Table S3).

Chytriomyes hyalinus, Rhizomucor miehei and Ustilago maydis were detected at dramatically lower abun-
dances than expected. Each of these taxa possesses sequence mismatches compared to the PCR primers
that were used. The number of mismatches to the forward and reverse primers was as follows: for C.
hyalinus, 2 and 1; for R. miehei, 0 and 2; and for U. maydis, 2 and 1. Thus, selection against these taxa
may have been due to primer annealing efficiency.
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That’s pretty consistent (we’ve talked about Fusarium verticillioides earlier), and suggests using a minimum abundance
threshold of 10 in THAPBI PICT is a little stricter that the author’s pipeline.

Moving on to the second amplicon library, the larger ITS1 marker using the ITS1f/ITS2 primer is more successful:

$ cut -f 1-5,9,11 summary/AL2.ITS1f-ITS2.assess.blast.tsv
<SEE TABLE BELOW>

Or open this in Excel. You should find:

#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 398 0 115 57 0.87 0.224
Alternaria alternata 23 0 4 3 0.92 0.148
Aspergillus flavus 27 0 0 3 1.00 0.000
Candida apicola 12 0 15 3 0.62 0.556
Chytriomyces hyalinus 25 0 2 3 0.96 0.074
Claviceps purpurea 27 0 0 3 1.00 0.000
Fusarium graminearum 27 0 0 3 1.00 0.000
Fusarium oxysporum 27 0 0 3 1.00 0.000
Fusarium verticillioides 12 0 15 3 0.62 0.556
Mortierella verticillata 27 0 0 3 1.00 0.000
Naganishia albida 27 0 0 3 1.00 0.000
Neosartorya fischeri 23 0 4 3 0.92 0.148
Penicillium expansum 24 0 3 3 0.94 0.111
Rhizoctonia solani 24 0 3 3 0.94 0.111
Rhizomucor miehei 4 0 23 3 0.26 0.852
Rhizophagus irregularis 11 0 16 3 0.58 0.593
Saccharomyces cerevisiae 9 0 18 3 0.50 0.667
Saitoella complicata 27 0 0 3 1.00 0.000
Trichoderma reesei 25 0 2 3 0.96 0.074
Ustilago maydis 17 0 10 3 0.77 0.370

Everything was found, although Rhizomucor miehei in particular found rarely, followed by Saccharomyces cerevisiae.
The original author wrote:

The ITS1 data set yielded 18 of the expected 19 taxa (Tables S3, S5); as in the first library, no reads were
classified as F. verticillioides, although many reads were placed in unclassified Fusarium. Rhizomucor
miehei and S. cerevisiae were substantially underrepresented. Compared to primers ITS1f and ITS2, R.
miehei had three mismatches in the forward and two mismatches in the reverse. Saccharomyces cerevisiae
had one mismatch in the forward primer and again likely suffered negative bias associated with amplicon
length (Table 3) and low sequence quality (Table S3).

Again, broad agreement here, with the problem of Fusarium verticillioides discussed earlier.

And finally, amplicon library two for ITS2 using the ITS3-KYO2 and ITS4-KYO3 primers:

$ cut -f 1-5,9,11 summary/AL2.ITS3-KYO2-ITS4-KYO3.assess.blast.tsv
<SEE TABLE BELOW>

Or open this in Excel. You should find:
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#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 313 0 200 57 0.76 0.390
Alternaria alternata 16 0 11 3 0.74 0.407
Aspergillus flavus 24 0 3 3 0.94 0.111
Candida apicola 0 0 27 3 0.00 1.000
Chytriomyces hyalinus 0 0 27 3 0.00 1.000
Claviceps purpurea 23 0 4 3 0.92 0.148
Fusarium graminearum 27 0 0 3 1.00 0.000
Fusarium oxysporum 27 0 0 3 1.00 0.000
Fusarium verticillioides 27 0 0 3 1.00 0.000
Mortierella verticillata 12 0 15 3 0.62 0.556
Naganishia albida 27 0 0 3 1.00 0.000
Neosartorya fischeri 16 0 11 3 0.74 0.407
Penicillium expansum 23 0 4 3 0.92 0.148
Rhizoctonia solani 11 0 16 3 0.58 0.593
Rhizomucor miehei 0 0 27 3 0.00 1.000
Rhizophagus irregularis 5 0 22 3 0.31 0.815
Saccharomyces cerevisiae 27 0 0 3 1.00 0.000
Saitoella complicata 26 0 1 3 0.98 0.037
Trichoderma reesei 22 0 5 3 0.90 0.185
Ustilago maydis 0 0 27 3 0.00 1.000

This time we’re missing Candida apicola, Chytriomyces hyalinus, Rhizomucor miehei and Ustilago maydis.

This too is in board agreement with the original author, although Candida apicola must have just dipped below our
abundance threshold.

Different amplification biases were evident between the ITS1 and ITS2 loci. In the ITS2 data set, only 16
of the 19 taxa that were present could be detected; C. hyalinus, R. miehei and U. maydis were not observed
(Tables S3, S6). . . . Rhizomucor miehei has one mismatch to the forward primer and three mismatches
to the reverse primer. While neither C. hyalinus nor U. maydis have sequence mismatches compared to
the primers, these two taxa have longer ITS2 amplicons than any others in the mock community (Table 3).
These two taxa were originally represented with a small number of reads in the raw data, but were com-
pletely removed during quality screening (Table S3). Candida apicola, which possesses two mismatches to
the reverse primer for this amplicon, was detected at substantially lower than expected frequencies (Figure
7; Figures S5, S6).

So, using THAPBI PICT on these amplicon datasets with a minimum abundance threshold of 10 gives broad agreement
with the original analysis.

4.4.4 Unexpected sequences

In the previous section, we highlighted several unexpected contaminants in the negative controls which could not be
explained as cross-contamination from the mock community. Likewise the read reports show plenty of unassigned
sequences, things which did not match the very narrow databases built from ITS1.fasta or ITS2.fasta containing
markers expected from the mock community only.

Some unexpected sequences might reflect additional alternative copies of ITS1 or ITS2 in the genomes. Others are
likely external contamination - after all there are fungi practically everywhere. This seems to have happened on am-
plicon library one in the high PCR cycle negative control at least. Meanwhile, amplicon library two does not have any
obvious external contamination.
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Amplicon library one - ITS1 (BITS/B58S3)

From the first amplicon library for ITS1 we saw the following sequences in the negative controls (and by chance, not
in any mock community samples) - shown here with their highest single sample abundance, which supports using a
minimum abundance threshold higher than 10:

MD5 checksum Max Species
daadc4126b5747c43511bd3be0ea2438 32 Wallemia muriae
e5b7a8b5dc0da33108cc8a881eb409f5 10 Wallemia muriae; Wallemia sebi
5194a4ae3a27d987892a8fee7b1669b9 17 Trichosporon asahii
702929cef71042156acb3a28270d8831 14 Candida tropicalis

Here are the reads from entries with a maximum sample abundance over 75 which the onebp and in some cases blast
based classifier failed to match, along with the most likely match from reviewing an online NCBI BLAST search. You
can easily extract these entries (and their sequences) from the bottom of the summary/AL1_BITS_B58S3.reads.*.
tsv files:

MD5 checksum Max Species
5ca0acd7dd9d76fdd32c61c13ca5c881 4562 Epicoccum nigrum; Epicoccum layuense
ee5382b80607f0f052a3ad3c4e87d0ce 575 glomeromycetes, perhaps Rhizophagus
880007c5a18be69c3f444efd144fc450 236 Ascochyta or Neoascochyta?
8e74f38b058222c58943fc6211d277fe 149 Fusarium
cae29429b90fc6539c440a140494aa25 114 glomeromycetes, perhaps Rhizophagus
85775735614d45d056ce5f1b67f8d2b2 109 Fusarium

The sequence with the top abundance, 5ca0acd7dd9d76fdd32c61c13ca5c881, perfectly matches fungus Epicoc-
cum nigrum and Epicoccum layuense. Present at low levels in multiple samples, this was the dominant sequence in
SRR5314339 aka FMockE.HC1_S178, which was a high PCR cycle number replicate of the even mixture. Perhaps this
was a stray fragment of Epicoccum which by chance was amplified early in the PCR? This example was not highlighted
in the original paper, but is exactly the kind of thing you should worry about with a high PCR cycle number.

Next ee5382b80607f0f052a3ad3c4e87d0ce and the less abundant sequence
cae29429b90fc6539c440a140494aa25 looks like glomeromycetes, perhaps Rhizophagus (from the mock
community), but could be from a Glomus species. Using the blast classifier and the minimal curated reference set
matches this to Rhizophagus irregularis, but the situation would be ambiguous in a more complete database.

Sequence 880007c5a18be69c3f444efd144fc450 has perfect matches to lots of unclassified fungi, and conflicting
perfect matches including Ascochyta or Neoascochyta. This was seen only in the high PCR cycle number sample
SRR5314339 as above.

Next 8e74f38b058222c58943fc6211d277fe and 85775735614d45d056ce5f1b67f8d2b2 have good BLAST
matches to several different Fusarium species, so could also be from the mock community.

You can find all six of these sequence on the edit-graph, most as isolated grey nodes along the bottom except
cae29429b90fc6539c440a140494aa25 which is 3bp away from Rhizophagus irregularis and linked to it with a
dashed line.

So some of the ITS1 sequences in amplicon library one are likely external contamination - particularly with the high
PCR cycle negative control (which was likely included exactly because of this risk).
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Amplicon library two - ITS1 (ITS1f/ITS2)

Using our blast classifier with the 19 species database, everything was assigned a match. The default onebp clas-
sifier was stricter. For example while the very common f1b689ef7d0db7b0d303e9c9206ee5ad (which with the
BITS/B58S3 primers gave bb28f2b57f8fddefe6e7b5d01eca8aea) was matched to Fusarium oxysporum, all the
variations of this were too far away from the database entries for a match.

These primers amplified a larger fragment to that in amplicon library one. Focusing on those with a sample-abundance
over 75 (as in the edit-graphs) which the onebp classifier did not match to the curated reference set:

Long sequence MD5 (ITS1f/ITS2). Max Species
57b06dff740b38bd6a0375abd9db3972 640 glomeromycetes, perhaps Rhizophagus
eed6e5c3881a233cca219f7ffd886bbe 315 glomeromycetes, perhaps Rhizophagus
05007e829ab71427b49743994a14105f 154 glomeromycetes, perhaps Rhizophagus
93b2d56429637947243e1b5d54a065cf 132 Fusarium
610caedb1a5699836310fce9dbb9c5fa 96 Fusarium
54aecb27334809f56b7f940b9ca060a3 93 Fusarium
bd30cf52b7031ddd96e3d7588c1f0e1c 90 Fusarium
c40cad2530d633430c3805be3740c9a4 88 Fusarium
d44cd471b11f15e2e42070806737e5d1 86 Fusarium
831acf596cca4ef840c5543d82e23d16 82 Fusarium
d4145ba9e3ed6c8c2138ed15b147152d 81 Fusarium

You can find all of these sequence on the edit-graph, most of those labelled as likely Fusarium are a 1bp edit away from
large grey node f1b689 top left (except 610caedb1a5699836310fce9dbb9c5fa which is an isolated node placed
bottom middle). Those labelled glomeromycetes are in the middle near, and in once case connected to, a dark red
Rhizophagus irregularis node.

i.e. None of the ITS1 sequences in amplicon library two are clear cut external contamination.

Amplicon library two - ITS2

Finally, amplicon library two using the ITS3-KYO and ITS4-KYO3 primers for ITS2. Again, the blast based classifier
matched everything to an entry in the mock community database. The stricter onebp classifier assigned most reads.
Here are those few it failed to match with a maximum read abundance over 75:

MD5 checksum Max Species
d1bb95fff4a7e9958fa3c7f13cc51343 211 Fusarium
2ef33e6acd8079d729b81d24b91fcf88 133 Fusarium
8edbf2c168b11f910458b0e567ae5fc6 78 Aspergillus

These three all appears on the edit-graph separated from a red node (database entry) by a dashed or dotted line indicating
a 2bp or 3bp edit away.

Using an online NCBI BLAST search didn’t pin any of these down to species level, but they do all seem to be fungi.
Again, quite a few Fusarium matches which could be alternative ITS2 sequences in the genomes but not in the curated
reference set. Likewise the Aspergillus like sequence could be from the Aspergillus flavus in the mock community.

i.e. None of the ITS2 sequences in amplicon library two are clear cut external contamination.

82 Chapter 4. Worked Examples



THAPBI PICT, Release 1.0.13

4.5 Great Lakes Mock Community 16S

This example is based on:

Klymus et al. (2017) Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate
species in the Great Lakes. https://doi.org/10.1371/journal.pone.0177643

Our main focus is 5 mock communities of 11 marine species in different ratios (Table 2). The target amplicon copy
number varies from trace level (14 reads) to high copy number (9090 reads), making this an interesting example to
examine THAPBI PICT’s minimum read abundance setting.

Two different sets primers were used targeting overlapping regions of the mtDNA 16S RNA marker gene, named
MOL16S and SPH16S, which were sequenced separately (and not as in some of the other examples pooled together
for the Illumina sequencing).

The full dataset includes aquarium and river environmental samples too, but public sequence databases lack many of
the sequences detected.

4.5.1 Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest source code release (.tar.gz file).
You should find it contains a directory examples/great_lakes/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis discussed.

Subdirectories MOL16S/ and SPH16S/ are used for the different amplicons (with different primer settings and reference
databases).

FASTQ data

File PRJNA379165.tsv was download from the ENA and includes the FASTQ checksums, URLs, and sample meta-
data. Derived file metadata.tsv contains report-ready metadata about the samples (see below).

Script setup.sh will download the raw FASTQ files for Klymus et al. (2017) from https://www.ebi.ac.uk/ena/data/
view/PRJNA379165

It will download 36 raw FASTQ files (18 pairs), taking 1.8GB on disk.

If you have the md5sum tool installed (standard on Linux), verify the FASTQ files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
...
$ cd ../

There is no need to decompress the files.
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Amplicon primers & reference sequences

The MOL16S amplicon targeted a short fragment of the mtDNA 16S RNA gene using degenerate primer pair
MOL16S_F/MOL16S_R (RRWRGACRAGAAGACCCT and ARTCCAACATCGAGGT).

The SPH16S amplicon targeted sphaeriid mussel species where it amplified an overlapping slightly downstream region
of the mtDNA 16S RNA gene using non-degenerate primers SPH16S_F/SPH16S_R (TAGGGGAAGGTATGAATGGTTTG
and ACATCGAGGTCGCAACC).

This means we need to run THAPBI PICT twice (once for each primer pair, against a different marker database each
time).

Metadata

The provided file metadata.tsv is based on metadata in the ENA, split into separate columns for reporting. It has
five columns:

1. Run accession, e.g. “SRR5534972”

2. Library name, e.g. “SC3PRO2”

3. Sample title, e.g. “Mock Community 2 MOL16S with Fish Block Primer”

4. Marker, “MOL16S” or “SPH16S”

5. Group, “Mock Community”, “Aquarium”, “River” or “Control”

When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 4,5,3,2

Argument -t metadata.tsv says to use this file for the metadata.

Argument -c 4,5,3,2 says which columns to display and sort by. This means Marker, Group, Sample Title, Library
name. This splits up the samples first by the expected marker, and then the group.

Argument -x 1 the filename stems can be found in that column one.

Other files

Files MOL16S.fasta and SPH16S.fasta are for building reference databases. These were constructed from the ac-
cessions in the paper listed in Table 1, Table 8, Supplementary Table 1, Supplementary Table 3, and some additional
accessions for the mock community. The sequences were primer trimmed using cutadapt (requiring both the left and
right primer to be present), and the description given cut to just species level (discarding strain or isolate information).

4.5.2 Minimum Abundance Threshold

THAPBI PICT has a default minimum absolute abundance threshold of 100 reads per marker per sample, and 0.1%
of the reads per marker per sample, before accepting any unique sequence. Background contamination and PCR noise
levels will vary, so having multiple Abundance & Negative Controls will help set this objectively.

In this dataset there is a single negative control for the MOL16S marker, library BIM8M aka SRR5534986. However,
we can also treat all the SPH16S libraries as negative controls for the MOL16S marker, and vice versa. You could do
this automatically within THAPBI PICT via the -n or --negctrls command line option, but as we shall see in this
example it will discard most of the data.
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In order to examine an appropriate minimum abundance threshold, the run.sh script provided uses -a 10 -f 0 to
accept any unique sequence seen in sample at least ten times (regardless the fraction of the sample read total). This
does allow unwanted noise though to the reports.

SPH16S

This was the more specific primer pair, expected to only amplify sphaeriid mussel species, so in general we expect less
unique sequences than with the more general MOL16S primers.

Looking at some key columns in the sample report,

$ cut -f 1,2,4,7,9,14 summary/SPH16S.samples.onebp.tsv
<SEE TABLE BELOW>

Or, open SPH16S.samples.onebp.xlsx in Excel. Focusing on the left hand columns, you should see:

#Marker Group Library-name Raw FASTQ Cutadapt Accepted
MOL16S Aquarium BIR2M 306311 2 0
MOL16S Aquarium BIR6M 291954 14 0
MOL16S Control BIM8M 2433 0 0
MOL16S Mock Community SC3PRO1 689712 17 0
MOL16S Mock Community SC3PRO2 405048 0 0
MOL16S Mock Community SC3PRO3 402219 16 0
MOL16S Mock Community NFSC3PRO3 349590 33 10
MOL16S Mock Community SC3PRO4 671241 6 0
MOL16S Mock Community NFSC3PRO4 420015 7 0
MOL16S Mock Community SC3PRO5 480606 13 0
MOL16S River BIM6M 821849 0 0
MOL16S River BIM2M 1119271 0 0
MOL16S River BIM4M 709472 40 19
SPH16S Aquarium BIR2S 498926 251148 209402
SPH16S Aquarium BIR6S 240360 226012 191456
SPH16S Mock Community SPSC3PRO1 425271 317960 224689
SPH16S Mock Community SPSC3PRO2 341476 282516 204249
SPH16S Mock Community SPSC3PRO4 410780 303957 197507

Things to note:

• In the “Raw FASTQ” column, the control has far fewer raw reads (good).

• The “Cutadapt” column shows reads after SPH16S primer trimming. There are hundreds of thousands for the
final five samples amplified with these primers (good). The first 13 samples were amplified with the MOL16S
primers, but still have low levels of sequences matching the SPH16S primers (bad).

• The “Read count” column is after applying the minimum abundance threshold (here 10). Two negative controls
still have reads, lifting the threshold to 20 or more would fix this. These are Sphaerium simile in mock community
NFSC3PRO3, and an unknown in river sample BIM4M.

So, using the MOL16S samples as negative controls suggests that for the SPH16S the default minimum abundance
threshold is perhaps overly harsh - but using at least 20 would be wise.
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MOL16S

We’ll initially looking at the same key columns in the sample report,

$ cut -f 1,2,4,7,9,14 summary/MOL16S.samples.onebp.tsv
<SEE TABLE BELOW>

Or, open MOL16S.samples.onebp.xlsx in Excel. Focusing on the left hand columns, you should see:

#Marker Group Library-name Raw FASTQ Cutadapt Accepted
MOL16S Aquarium BIR2M 306311 297657 256386
MOL16S Aquarium BIR6M 291954 286427 256470
MOL16S Control BIM8M 2433 1014 551
MOL16S Mock Community SC3PRO1 689712 656661 550293
MOL16S Mock Community SC3PRO2 405048 377026 297877
MOL16S Mock Community SC3PRO3 402219 380347 304626
MOL16S Mock Community NFSC3PRO3 349590 328956 262963
MOL16S Mock Community SC3PRO4 671241 628644 494257
MOL16S Mock Community NFSC3PRO4 420015 364233 262726
MOL16S Mock Community SC3PRO5 480606 458896 383865
MOL16S River BIM6M 821849 799349 703578
MOL16S River BIM2M 1119271 954787 823782
MOL16S River BIM4M 709472 367539 317363
SPH16S Aquarium BIR2S 498926 25 0
SPH16S Aquarium BIR6S 240360 27 0
SPH16S Mock Community SPSC3PRO1 425271 35 0
SPH16S Mock Community SPSC3PRO2 341476 168 27
SPH16S Mock Community SPSC3PRO4 410780 420 108

Looking at the same points, I see two problems:

• The control sample BIM8M (SRR5534986) had almost a thousand unwanted MOL16S matches, reduced to 551
with a minimum abundance threshold of 10.

• All the SPH16S mock community samples have unwanted MOS16S matches, the worst case being SPSC3PRO4
(SRR5534980) with over four hundred reads reduced to 108 with the minimum abundance threshold of 10.

To see exactly what is in these two problematic samples, we can turn to the read report summary/MOL16S.reads.
onebp.xlsx in Excel, or the TSV version at the command line (using grep to drop the rows ending with a zero count):

$ cut -f 1,2,3,7,10 summary/MOL16S.reads.onebp.tsv | grep -v "[[:space:]]0$"
# Marker ␣
→˓MOL16S
# Group ␣
→˓Control
# Sample ␣
→˓Blank MOL16S
# Library-name BIM8M
# Raw FASTQ 2433
# Flash 1963
# Cutadapt 1014
# Threshold pool raw_
→˓data
# Threshold 10

(continues on next page)
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(continued from previous page)

# Control ␣
→˓Sample
# Singletons 258
# Accepted 551
# Unique 4
#Marker MD5 onebp-predictions Total-abundance ␣
→˓SRR5534986
MAX or TOTAL - - 4914872 478
MOL16S 20c0669e4c6f8436c9d42736df727c83 Sphaerium simile 152924 478
MOL16S e1d838b4f39bffe88d8c0e79b52700f1 Sphaerium simile 3215 13
MOL16S 778e3dace4b993135e11d450e6c559ff Sphaerium simile 249 11
MOL16S a36d3f7291c173c4243f22c2afbd111e Sphaerium simile 147 49

The unwanted sequences in the control sample are dominated by a single sequence (and three variants of it), which
were matched to Sphaerium simile.

This is consistent with the original author’s analysis - although our pipeline has produced higher read counts:

Finally, our water blank sample had 71 reads, eight of those being singletons with the remaining belonging
to Sphaerium striatinum (Table 9), likely due to amplicon contamination in the lab.

What about the other problematic sample? Again, you can find this in the Excel read report, or at the command line:

$ cut -f 1,2,7,25 summary/MOL16S.reads.onebp.tsv | grep -v "[[:space:]]0$"
# Marker SPH16S
# Group Mock Community
# Sample Mock Community 4 SPH16S
# Library-name SPSC3PRO4
# Raw FASTQ 410780
# Flash 375539
# Cutadapt 420
# Threshold pool raw_data
# Threshold 10
# Control Sample
# Singletons 272
# Accepted 108
# Unique 3
#Marker MD5 Total-abundance SRR5534980
MAX or TOTAL - 4914872 46
MOL16S ecdaa082b70f5e268f76128693531760 269109 45
MOL16S 98dc259e48de3e258cb93a34c38a9484 120026 17
MOL16S 20c0669e4c6f8436c9d42736df727c83 152924 46

The species names are too long to include in the above, listing them directly:

$ grep -E
→˓"(MD5|20c0669e4c6f8436c9d42736df727c83|ecdaa082b70f5e268f76128693531760|98dc259e48de3e258cb93a34c38a9484)
→˓" \
summary/MOL16S.reads.onebp.tsv | cut -f 2,3

<SEE TABLE BELOW>

Giving:
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MD5 onebp-predictions
ecdaa082b70f5e268f76128693531760 Dreissena bugensis;Dreissena rostriformis
98dc259e48de3e258cb93a34c38a9484 Dreissena polymorpha
20c0669e4c6f8436c9d42736df727c83 Sphaerium simile

The unwanted mock community sample content is split between Sphaerium and Dreissena, and suggest using a mini-
mum threshold of perhaps 50 reads?

Minimum threshold

Clearly using a minimum abundance threshold of 10 is too low, and it should be increased to at perhaps 50 based on
this. However, we have one exceptional sequence present at almost 500 copies. Setting the minimum that high seems
excessive - but perhaps the THAPBI PICT default of 100 is more reasonable?

4.5.3 Presence and absence

This example includes mock communities which are a controlled setup where we know what the classifier ought ideally
to report for every sample - and all their expected marker sequences are in the classification database.

The thapbi_pict assess command run via example script run.sh uses a configuration file with all the mock com-
munity species for MOL16S, and the three sphaeriid mussel species for SPH16S - regardless of the target copy number
in the mixture (see Klymus et al. (2017) Table 2), or presence/absence of the fish block.

Of course, just as in the original author’s analysis, not everything we think was present is detected. And vice versa, we
see some things which are not classified.

SPH16S

This was the more specific primer pair, expected to only amplify sphaeriid mussel species, so in general we expect less
unique sequences than with the more general MOL16S primers.

Only three members of the mock community should match. Looking at the summary/SPH16S.assess.onebp.tsv
output file in Excel or at the command line, when run at a minimum abundance threshold of 10, these are the key
numbers:

$ cut -f 1-5,9,11 summary/SPH16S.assess.onebp.tsv
<SEE TABLE BELOW>

Or open this in Excel. You should find:

#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 9 5 0 656 0.78 0.357
Pisidium compressum 3 0 0 7 1.00 0.000
Sphaerium corneum 3 0 0 7 1.00 0.000
Sphaerium nucleus 0 3 0 7 0.00 1.000
Sphaerium simile 3 1 0 6 0.86 0.250
Sphaerium striatinum 0 1 0 9 0.00 1.000
OTHER 62 SPECIES IN DB 0 0 0 620 0.00 0.000
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No false negatives (but we have set the threshold very low), but 5 false positives: Three cases of Sphaerium nucleus,
and one each of S. simile and S. striatinum.

The S. nucleus matches are simply down to an ambiguous sequence in the database from both this and expected species
S. corneum. See also the output from thapbi_pict conflicts -d SPH16S.sqlite which can report this.

The S. striatinum prediction came from SPSC3PRO1 aka SRR5534978, and is down to several sequences one base pair
away the expected S. simile reference, but also one base pair away from an S. striatinum database entry.

We already discussed the trace level of 10 reads for Sphaerium simile in mock community sample NFSC3PRO3 using
the SOL16S primers. As suggested, raising the minimum abundance threshold to at least 20 reads would solve this,
but the other false positives here are limitations of the reference set.

MOL16S

Looking at the summary/MOL16S.assess.onebp.tsv output file in Excel or at the command line, when run at a
minimum abundance threshold of 10, these are the key numbers:

$ cut -f 1-5,9,11 summary/MOL16S.assess.onebp.tsv
<SEE TABLE BELOW>

Or open this in Excel. You should find:

#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 74 23 3 1220 0.85 0.260
Cipangopaludina chinensis 7 0 0 4 1.00 0.000
Corbicula fluminea 0 1 0 10 0.00 1.000
Dreissena bugensis 0 8 0 3 0.00 1.000
Dreissena polymorpha 7 1 0 3 0.93 0.125
Dreissena rostriformis 7 1 0 3 0.93 0.125
Gillia altilis 7 0 0 4 1.00 0.000
Melanoides tuberculata 7 0 0 4 1.00 0.000
Mytilopsis leucophaeata 7 0 0 4 1.00 0.000
Pisidium compressum 7 0 0 4 1.00 0.000
Potamopyrgus antipodarum 7 0 0 4 1.00 0.000
Sander vitreus 4 0 3 4 0.73 0.429
Sphaerium corneum 7 1 0 3 0.93 0.125
Sphaerium nucleus 0 8 0 3 0.00 1.000
Sphaerium simile 7 2 0 2 0.88 0.222
Sphaerium striatinum 0 1 0 10 0.00 1.000
OTHER 105 SPECIES IN DB 0 0 0 1155 0.00 0.000

This time we do have false negatives - three of the seven samples are missing Sander vitreus. Two of these are from
Community 3 where this is intended to be at only 14 copies, the third was SC3PRO2 aka SRR5534972 for Mock Com-
munity 2 MOL16S with Fish Block Primer, with a target abundance of 72 copies. Here the fish block worked.

Again we have lots of false positives, mostly sister species which reflects limitations of the reference set.

The exception is Corbicula fluminea. Referring to the sample summary report MOL16S.samples.onebp.xlsx, this
is from SC3PRO1 aka SRR5534973, and at low abundance. This species was present in the aquaria sample sediment,
but as discussed in the paper did not amplify from there - so cross-contamination seem less likely.
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Unknowns

Looking at SPH16S.samples.onebp.xlsx and MOL16S.samples.onebp.xlsx even our controls have unknown
reads. To study these, next I’d look at the edit-graphs.

4.5.4 Edit Graphs

The sequence Edit Graph is very useful for understanding what came off the sequencer - although you may need to
play with the thresholds to find a sweet spot for hiding the noise. Using run.sh calls the pipeline with a minimum
abundance 10, which would give large noisy edit graphs. Instead, we build them using a minimum abundance of 100,
giving files SPH16S.edit-graph.a100.xgmml and MOL16S.edit-graph.a100.xgmml, and additional graphs for
the mock community samples alone.

My main conclusion from the figures below is that the THAPBI PICT default onebp classifier is reasonable for these
mock communities markers. However, the MOL16S database needs considerable expansion for use on the environmen-
tal samples. Perhaps updating this example in 5 years time there will be enough published markers to assign species to
all the unknowns here?

SPH16S

First SPH16S, where there are just the three samples for the mock communities. Each is expected to have three species
Sphaerium simile, Sphaerium corneum and Pisidium compressum only. With a minimum abundance threshold of 100,
we get three nice clear graph components, and a few single nodes:

Next, using all the samples but again a sample level minimum abundance 100:
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Very little change except the addition of a fourth cluster, some base pairs away from the Sphaerium simile component
and centred on this sequence:

>79b63a2ef96b839ae3263369f8d390b9
ACGTGGAAAAAACTGTCTCTTTTGTATAAAAAGAAGTTTATTTTTAAGTGAAAAAGCTTAAATGTTTATAAAAGACGAGA
AGACCCTATCGAACTTAAATTATTTGTTTAAATTTTTAAATAAAAAAAAGTTTAGTTGGGGAAACTTAAAGTAAAAAGTA
ACGCTTTATTTTTTTGTCAGGAGCCTGTAGTATGGAAAAATGAAAAAGTTACCGTAGGGATAACAGCGCTTTCTTCTCTG
AGAGGACTAATTAAAGAGTT

This is likely another Sphaerium species, NCBI BLAST suggests Sphaerium striatinum - with AF152045.1 just two
base pair away. This is in our reference database file SPH16S.fasta:

>AF152045.1 Sphaerium striatinum
ACGTGGAAAAAACTGTCTCTTTTGTATAAAAAGAAGTTTATTTTTAAGTGAAAAAGCTTAAATGTTTATAAAAGACGAGA
AGACCCTATCGAACTTAAATTATTTGTTTAAATTTTTAAATAAAAAAAAGTTTAGTTGGGGAAACTTAAAGTAAAAATTA
ACGCTTTATTTTTTTGTCAGGAGCCTGTACTATGGAAAAATGAAAAAGTTACCGTAGGGATAACAGCGCTTTCTTCTCTG
AGAGGACTAATTAAAGAGTT
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MOL16S

For MOL16S, starting with an edit graph of just the seven MOL16S samples, and a minimum abundance threshold of
100, we see:

Four large components representing species with lots of variants, with red central nodes in our database. Other less
diverse graph components for the remaining species, and a selection of isolated unknowns.

Next, using all the samples but again a sample level minimum abundance 100:

92 Chapter 4. Worked Examples

https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/great_lakes.mock.MOL16S.svg?sanitize=true


THAPBI PICT, Release 1.0.13

4.5. Great Lakes Mock Community 16S 93

https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/great_lakes.MOL16S.svg?sanitize=true


THAPBI PICT, Release 1.0.13

Suddenly we see dozens of new components, most of which have no references (coloured nodes) representing likely
unknown species.

Conclusion

I will close by quoting the end of Klymus et al. (2017):

The present study further demonstrates that metabarcoding data are only as good as the sequence and
taxonomic information provided on genetic databases. Increased collaboration among taxonomists and
molecular systematists is required in order to gain maximum benefits of this developing tool.

I agree - these markers seem to work, but there are still too many unknown sequences.

4.6 Bat Mock Community COI

This example considers mock communities of 3 bat species (in different ratios) using the COI marker, using one of the
amplicon sequencing libraries from:

Walker et al. (2019) A fecal sequel: Testing the limits of a genetic assay for bat species identification.
https://doi.org/10.1371/journal.pone.0224969

The example highlights the importance of good database coverage with the default onebp classifier method.

4.6.1 Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest source code release (.tar.gz file).
You should find it contains a directory examples/fecal_sequel/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis discussed.

FASTQ data

File PRJNA574765 was download from the ENA and includes the FASTQ checksums, URLs, and the key metadata.
Related file metadata.tsv contains report-ready metadata about the samples (see below).

Script setup.sh will download the raw FASTQ files for Walker et al. (2019) from https://www.ebi.ac.uk/ena/data/
view/PRJNA574765

It will download 120 raw FASTQ files (60 pairs), taking about 641MB on disk

If you have the md5sum tool installed (standard on Linux), verify the FASTQ files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
...
$ cd ..

There is no need to decompress the files.

We focus on bioproject PRJNA574765 which has 60 samples and covers the mock communities. Additionally the paper
describes PRJNA525109 (41 samples comparing genetic efficacy vs traditional survey techniques), and PRJNA525407
(9 samples looking at bat species assemblages in archaeological sites in Belize, with an expanded reference set).
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Amplicon primers & reference sequences

The primer pair is SFF_145f (GTHACHGCYCAYGCHTTYGTAATAAT) and SFF_351r (CTCCWGCRTGDGCWAGRTTTCC).

The reference set of COI sequences is taken from Supplementary S2 in the preceding paper (which also included
bioproject PRJNA325503 with 9 samples):

Walker et al. (2016) Species From Feces: Order-Wide Identification of Chiroptera From Guano and Other
Non-Invasive Genetic Samples. https://doi.org/10.1371/journal.pone.0162342

File COI_430_bats.fasta of pre-trimmed bat COI markers is generated by setup.sh by downloading the FASTA
file from Walker et al. (2016) Supplementary S2, with underscores replaced with spaces in the record names.

Provided file observed_3_bats.fasta contains alternative COI markers observed in at least 10 samples, and their
assumed species source. This is for discussing the effect of the database.

Metadata

The provided file metadata.tsv is based on PRJNA574765 but breaks up the sample name into separate columns:

1. Accession, assigned by the public archive, e.g. “SRR10198789”

2. Rare, which of the 3 species is at low abundance, “COTO”, “EPFU” or “TABR”.

3. Ratio, either “1:64” (rare) or “1:192” (very rare)

4. Replicate, “01” to “10” (leading zero for alphabetical sorting)

The four letter appreviations are Corynorhinus townsendii (COTO), Eptesicus fuscus (EPFU) and Tadarida brasiliensis
(TABR).

When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 2,3,4

Argument -t metadata.tsv says to use this file for the metadata.

The -x 1 argument indicates the filename stem can be found in column 1, Accession.

Argument -c 2,3,4 says which columns to display and sort by (do not include the indexed column again). i.e. Rare
species, ratio, replicate.

We have not given a -g argument to assign colour bands in the Excel reports, so it will default to the first column in
-c, meaning we get three coloured bands for “COTO”, “EPFU” and “TABR”.

Other files

File mock_community.known.tsv describes the three species of bats expected in the mock communities (which use
different ratios).
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4.6.2 Database of 430 bats

The mock communities of 3 bats in Walker et al. (2019) are made up of just Corynorhinus townsendii (COTO),
Eptesicus fuscus (EPFU) and Tadarida brasiliensis (TABR). Following their analysis, we will use the same 430 bat
species for our reference database, available as a FASTA file of COI trimmed markers as Supplementary S2 to the
earlier paper Walker et al. (2016).

Running setup.shwill download that FASTA file as COI_430_bats.fasta, and we can load this into a new THAPBI
PICT database using:

$ rm -rf COI_430_bats.sqlite # delete any pre-existing DB
$ thapbi_pict import -k COI \
--left GTHACHGCYCAYGCHTTYGTAATAAT --right CTCCWGCRTGDGCWAGRTTTCC \
-d COI_430_bats.sqlite -i COI_430_bats.fasta -x

File COI_430_bats.fasta had 430 sequences, of which 430 accepted.
Of 430 potential entries, loaded 430 entries, 0 failed parsing.

Here we have named the new marker COI, and recorded the SFF_145f/SFF_351r primer pair. Calling run.sh will
first run the pipeline using this COI database and primers, and the metadata as described earlier. This will make an
edit-graph named summary/430_bats.COI.edit-graph.xgmml which you can open in Cytoscape. This contains
three main connected components for the three expected species, and a smattering of singletons and other tiny clusters.
The -k or --marker option was used to force inclusion of the database entries (even if not seen in the samples).

Importantly, only the Eptesicus fuscus cluster includes a red node from the database which is also in the samples.
i.e. None of the sequence data from Corynorhinus townsendii or Tadarida brasiliensis perfectly matches the given
reference species sequence. The three main clusters are shown below:

All three clusters have species labelled nodes. Starting on the left, we have Tadarida brasiliensis where the reference
is a one base pair edit away from the dominant variant (seen in 27 samples). In the middle we have Eptesicus fuscus
where while the reference sequence was seen, once again it is not a dominant variant (two variants were seen in 40
samples). Finally, on the right for Corynorhinus townsendii the reference is a one base pair edit away from the two
dominant variants (seen in 40 and 23 samples).
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This is a severe handicap for the default onebp classifier which looks for identical matches or up to a single base pair
different. We can either switch to a fuzzier classifier (like the blast based classifier), or look at filling in the database.

One option would be to add a (curated subset of) published sequences from the NCBI. At the time of writing while
that helps, there are still gaps here. What the example in run.sh does is add all the sequences observed in at least
10 samples to the database with the presumed species. This is similar to how the THAPBI PICT default database of
Phytophthora ITS1 contains actually observed variants from single species positive controls. It ceases to be an entirely
fair assessment, but comparing the Excel reports from the two database the improvement is quite dramatic.

Looking at summary/430_bats.COI.samples.onebp.xlsx (430 references only) compared to summary/
ext_bats.COI.samples.onebp.xlsx (with an extra 14 sequences added), the Tadarida brasiliensis detection im-
proves markedly (although is still spotted in only two of the 20 replicates where it is the rare species - consistent with
the published analysis and put down to primer preference), and also there are far less unknown reads reported.

4.6.3 Pooling

This is a nice example to show the pooling script included with THAPBI PICT, here pooling on the first two columns
of the sample report:

$ ../../scripts/pooling.py -i summary/430_bats.COI.samples.onebp.tsv -c 1,2
<SEE TABLE BELOW>

You can specify an output stem like -o pooled and get pooled.tsv and matching pooled.xlsx files, but by default
the plain text table is printed to the terminal:

Rare Ra-
tio

Samples-
sequenced

Corynorhinus
townsendii

Eptesicus fus-
cus

Tadarida
brasiliensis

Un-
known

COTO 1:192 10 58948 99888 82587 19059
COTO 1:64 10 45632 51977 0 148446
EPFU 1:192 10 99840 9668 103545 21191
EPFU 1:64 10 91018 52574 21507 65809
TABR 1:192 10 149636 73958 1563 52279
TABR 1:64 10 128019 106581 773 50833

As discussed earlier, where Corynorhinus townsendii (COTO) is the rare species at a 1:64 ratio there is no Tadarida
brasiliensis matched with the initial database, but it is found with the extended database:

$ ../../scripts/pooling.py -i summary/ext_bats.COI.samples.onebp.tsv -c 1,2
<SEE TABLE BELOW>

Again, shown as a table:

Rare Ra-
tio

Samples-
sequenced

Corynorhinus
townsendii

Eptesicus fus-
cus

Tadarida
brasiliensis

Un-
known

COTO 1:192 10 61727 100185 92815 5755
COTO 1:64 10 70121 68495 101333 6106
EPFU 1:192 10 100822 9668 108264 15490
EPFU 1:64 10 91242 68322 67690 3654
TABR 1:192 10 154907 98791 1563 22175
TABR 1:64 10 133876 140456 773 11101

One of the options in this script is -b or --boolean for a yes/no summary rather than showing the sum of the reads:
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$ ../../scripts/pooling.py -i summary/ext_bats.COI.samples.onebp.tsv -c 1,2 -b
<SEE TABLE BELOW>

All three species (and unknowns) are found in at least one of the 10 samples sequenced in each of the six groups:

Rare Ra-
tio

Samples-
sequenced

Corynorhinus
townsendii

Eptesicus fus-
cus

Tadarida
brasiliensis

Un-
known

COTO 1:192 10 Y Y Y Y
COTO 1:64 10 Y Y Y Y
EPFU 1:192 10 Y Y Y Y
EPFU 1:64 10 Y Y Y Y
TABR 1:192 10 Y Y Y Y
TABR 1:64 10 Y Y Y Y

In the Excel output the species labels are rotated 90 degrees allowing a very compact display.

4.7 Synthetic controls with fungal ITS2

Here we consider some environmental fungi, mock communities, and a synthetic spike-in control using some of the
Illumina data from the following paper:

Palmer et al. (2018) Non-biological synthetic spike-in controls and the AMPtk software pipeline
improve mycobiome data. https://doi.org/10.7717/peerj.4925 https://www.ebi.ac.uk/ena/data/view/
PRJNA305924

The mock communities have known composition, while the synthetic control has a mix of 12 artificial sequences which
can be easily distinguished from the biological ITS2 sequences.

4.7.1 Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest source code release (.tar.gz file).
You should find it contains a directory examples/synthetic_mycobiome/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis discussed.

FASTQ data

File PRJNA305924.tsvwas download from the ENA and includes the FASTQ checksums, URLs, and sample metadata
(not just for the files we will be using, but additional Illumina MiSeq runs, and Ion Torrent data too).

Script setup.sh will download the raw FASTQ files for two of the Illumina MiSeq runs described in Palmer et al.
(2018) from https://www.ebi.ac.uk/ena/data/view/PRJNA305924

It will download 42 raw FASTQ files (21 pairs), taking about 4.8 GB on disk.

If you have the md5sum tool installed (standard on Linux), verify the FASTQ files downloaded correctly:

$ cd ..
$ md5sum -c MD5SUM.txt
...
$ cd ..
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There is no need to decompress the files.

Amplicon primers & reference sequences

A region of ITS2 was amplified using the fITS7/ITS4 primer pair (GTGARTCATCGAATCTTTG and
TCCTCCGCTTATTGATATGC) with an average product length of 264bp using public fungal sequences.

The file references.fasta we provide is based on amptk_mock2.fa and amptk_mock3.fa from the authors’
GitHub repository <https://github.com/nextgenusfs/amptk/tree/master/amptk/DB>, but formatted suitable for direct
import into our tool with primer-trimmed sequences.

Additional file environment.fasta contains selected close matches to sequences from the environmental samples in
the NCBI found with BLASTN against the NT database.

Metadata

File metadata.tsv is based on the ENA metadata and the paper text. It has four columns:

1. run_accession, assigned by the public archive, e.g. “SRR7109326”

2. library_name, with sequencing run as a prefix, e.g. “m6-stds” or “m6-301-1”

3. sample_alias, as used in the paper, e.g. “BioMockStds” or “301-1”

4. group, human readable sample type, e.g. “Biological Mock” or “Environment”

5. read_count, the number of read pairs in the FASTQ files

When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 3,4

Argument -t metadata.tsv says to use this file for the metadata.

Argument -c 3,4 says which columns to display and sort by. This means sample alias, then group.

Argument -x 1 (default, so not needed) indicates the filename stem can be found in column 1, run accession.

Other files

Provided files BioMockStds.known.tsv, BioMock.known.tsv, and SynMock.known.tsv list the expected 25
species, 22 species, and 12 synthetic controls expected in the mock samples. Folder expected/ is created linking
accession names to the appropriate species for assessing the classifier performance.

Sub-folder intermediate/ITS2/ is used for intermediate files, in general there is a sub-folder for each primer-pair.

4.7.2 Minimum Abundance Threshold

With less samples multiplexed per sample than our own work (which guided the default settings), these samples were
sequenced at much higher depth:

$ cut -f 1,2,5 metadata.tsv
<SEE TABLE BELOW>
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As a table:

run_accession library_name read_count
SRR7109326 m6-stds 817764
SRR7109327 m6-301-1 890561
SRR7109328 m6-mock3-32000b 943839
SRR7109329 m6-766-1 840068
SRR7109330 m6-744-2 704173
SRR7109331 m6-500-1 911793
SRR7109341 m6-712-2 872265
SRR7109342 m6-500-2 879762
SRR7109343 m6-757-1 903886
SRR7109344 m6-757-2 1210627
SRR7109345 m6-mock3-16000 922440
SRR7109406 m6-712-1 897159
SRR7109408 m6-744-1 778090
SRR7109409 m6-mock3-32000a 1125275
SRR7109411 m6-766-2 785776
SRR7109412 m6-755-1 957067
SRR7109414 m6-736-1 998817
SRR7109415 m6-301-2 1181567
SRR7109417 m6-755-2 1071829
SRR7109418 m6-736-2 919363
SRR7109420 m6-SynMock 1299238

The defaults are an absolute abundance threshold of 100, and a fractional threshold of 0.1% (i.e. -a 100 -f 0.001).
After merging overlapping reads and primer matching we could expect over 650,000 reads per m6 sample, giving a
threshold over 650 reads.

So, with this coverage the default fractional abundance threshold of 0.1% (i.e. -f 0.001) makes the default absolute
abundance threshold of 100 (i.e. -a 100) redundant. However, on this dataset our defaults are quite cautious, and
control samples can help set thresholds objectively.

In this dataset there is a single synthetic control for m6 sequencing run, library SynMock aka SRR7109420. We can tell
THAPBI PICT at the command line to use this to set the fractional abundance threshold via -y or --synctrls, and/or
set the absolute abundance threshold via -n or --negctrls (with a list of control file names). It turns out however
that with the default thresholds the control is clean (no unwanted non-synthetic ITS2 reads).

Using the defaults

The first step in run.sh is to run the pipeline with the default abundance thresholds (stricter than the alternatives
analyses below), giving just a few hundred unique ITS2 sequences:

$ grep -c "^ITS2" summary/defaults.ITS2.tally.tsv
360
$ grep -c "^ITS2" summary/defaults.ITS2.reads.1s5g.tsv
360

Look at summary/defaults.ITS2.samples.1s5g.xlsx or working at the command line with the TSV file:

$ cut -f 1,7,9,11-12,14-15 summary/defaults.ITS2.samples.1s5g.tsv
<SEE TABLE BELOW>
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As a table:

#sample_alias Cutadapt Threshold Max non-spike Max spike-in Accepted Unique
301-1 807956 808 348111 0 528957 38
301-2 1108129 1109 457440 0 778850 31
500-1 819468 820 289229 0 516474 30
500-2 813470 814 214155 0 529967 34
712-1 820146 821 131937 0 533310 56
712-2 796363 797 299240 0 520290 34
736-1 943427 944 349965 0 669563 36
736-2 854919 855 282132 0 609025 25
744-1 706659 707 358089 0 493209 20
744-2 651528 652 136471 0 452421 36
755-1 887650 888 462493 0 616322 27
755-2 982087 983 589120 0 669602 17
757-1 835431 836 281533 0 578198 35
757-2 1099959 1100 224635 0 742540 28
766-1 792260 793 526535 0 583643 16
766-2 711176 712 251097 0 469397 26
BioMock 866253 867 56120 0 591947 23
BioMock 846519 847 65686 0 585715 23
BioMock 1023231 1024 84748 0 698170 22
BioMockStds 736334 737 35300 0 521693 26
SynMock 1199806 1200 0 103014 862950 18

The SynMock control is clean, no non-spike-in reads passed the default abundance thresholds.

So, there is scope to lower the default thresholds - but how low? We will start by reproducing the Illumina part of
Figure 6, which was based on the m6 MiSeq sequencing run. This figure explores tag-switching in the demultiplexing,
and in the authors’ analysis goes as low as 5 reads.

Excluding only singletons

The run.sh example continues by running the pipeline on the m6 dataset with -f 0 -a 2 to accept everything except
singletons (sequences which are only seen once in a sample; including them gives about ten times as many unique
sequences which slows everything down). Also, this analysis does not use the synthetic control to raise the threshold
on the rest of the samples - we want to see any low level mixing. We then can compare our sample report against Figure
6.

Looking at the unique reads in the FASTA file, tally table, or in the reads report with metadata, we have nearly 200
thousand ITS2 sequences:

$ grep -c "^ITS2" summary/a2.ITS2.tally.tsv
196480
$ grep -c "^ITS2" summary/a2.ITS2.reads.onebp.tsv
196480

Look at summary/a2.ITS2.samples.onebp.xlsx or working at the command line with the TSV file:

$ cut -f 1,5-7,11-12,14-15 summary/a2.ITS2.samples.onebp.tsv
<SEE TABLE BELOW>

As a table:
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#sam-
ple_alias

Raw
FASTQ

Flash Cu-
tadapt

Max non-
spike

Max spike-
in

Ac-
cepted

Unique

301-1 890561 812674 807956 348111 0 687950 12638
301-2 1181567 1113606 1108129 457440 0 977003 13319
500-1 911793 823392 819468 289229 0 689174 14249
500-2 879762 817277 813470 214155 0 699634 12851
712-1 897159 823034 820146 131937 0 703189 17574
712-2 872265 800475 796363 299240 0 683057 13937
736-1 998817 948348 943427 349965 15 834461 12993
736-2 919363 858915 854919 282132 0 757097 9625
744-1 778090 710762 706659 358089 0 614988 7936
744-2 704173 654661 651528 136471 0 564238 8650
755-1 957067 891942 887650 462493 15 782052 12142
755-2 1071829 987280 982087 589120 0 848793 10587
757-1 903886 839105 835431 281533 0 725057 12729
757-2 1210627 1105530 1099959 224635 0 950457 15819
766-1 840068 794475 792260 526535 0 712126 7519
766-2 785776 714894 711176 251097 0 606887 11189
BioMock 943839 872263 866253 56120 0 744007 17274
BioMock 922440 859262 846519 65686 0 733784 16676
BioMock 1125275 1047383 1023231 84748 3 884514 18416
BioMockStds 817764 740627 736334 35300 0 628576 17202
SynMock 1299238 1204532 1199806 187 103014 1043525 14234

Here SynMock (SRR7109420) is the synthetic control, and it has some non-spike-in reads present, the most abundant
at 187 copies. Conversely, samples 755-1 (SRR7109412), 736-1 (SRR7109414), and one of the BioMock samples
(SRR7109409) have trace levels of unwanted synthetic spike-in reads, the most abundant at 15, 15 and 3 copies respec-
tively. The counts differ, but these are all samples highlighted in Figure 6 (sharing the same Illumina i7 or i5 index for
multiplexing). We don’t see this in the other BioMock samples, but our pipeline appears slightly more stringent.

As percentages, 187/1199806 gives 0.0156% which is nearly ten times lower than our default of 0.1%. The numbers the
other way round are all even lower, 15/462496 gives 0.003%, 15/349965 gives 0.004%, and 3/1023234 gives 0.003%.

Using the synthetic control

Next the run.sh example uses the SynMock synthetic control to automatically raise the fractional abundance threshold
from zero to 0.015% by including -a 100 -f 0 -y raw_data/SRR7109420_*.fastq.gz in the command line.
This brings down the unique sequence count enough to just over three thousand, allowing use of a slower but more
lenient classifier as well:

$ grep -c "^ITS2" summary/ctrl.ITS2.tally.tsv
3097
$ grep -c "^ITS2" summary/ctrl.ITS2.reads.1s5g.tsv
3097

Look at summary/ctrl.ITS2.samples.1s5g.xlsx or working at the command line with the TSV file:

$ cut -f 1,7,9,11-12,14-15 summary/ctrl.ITS2.samples.1s5g.tsv
<SEE TABLE BELOW>

Note we now get a threshold column showing the absolute threshold applied to each sample (using the inferred per-
centage), all above the absolute default of 100. You can see the total accepted read count has dropped, and the number
of unique sequences accepted has dropped even more dramatically:
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#sample_alias Cutadapt Threshold Max non-spike Max spike-in Accepted Unique
301-1 807956 126 348111 0 579502 262
301-2 1108129 173 457440 0 829870 189
500-1 819468 128 289229 0 568336 228
500-2 813470 127 214155 0 578432 215
712-1 820146 128 131937 0 569100 181
712-2 796363 125 299240 0 570488 243
736-1 943427 148 349965 0 708900 183
736-2 854919 134 282132 0 653753 220
744-1 706659 111 358089 0 540597 273
744-2 651528 102 136471 0 472785 129
755-1 887650 139 462493 0 694273 340
755-2 982087 154 589120 0 754928 338
757-1 835431 131 281533 0 610579 171
757-2 1099959 172 224635 0 781212 142
766-1 792260 124 526535 0 648524 301
766-2 711176 111 251097 0 508838 205
BioMock 866253 136 56120 0 607401 77
BioMock 846519 132 65686 0 603186 82
BioMock 1023231 160 84748 0 718660 85
BioMockStds 736334 115 35300 0 526317 48
SynMock 1199806 100 187 103014 885051 113

Note that Palmer et al. (2018) apply a threshold to individual sequences, but the thresholding strategy in THAPBI
PICT applies the fractional threshold to all the samples (given in the same sub-folder as input, so you can separate your
MiSeq runs, or your PCR plates, or just apply a global threshold).

In fact, looking at the read report summary/ctrl.ITS2.reads.1s5g.tsv it is clear that while this threshold may
have excluded Illumina tag-switching, it has not excluded PCR noise - there are hundreds of low abundance sequences
unique to a single sample. To address that we would have to use a considerably higher threshold, and the default 0.1%
is a reasonable choice here, or apply a denoising algorithm like UNOISE.

Threshold selection

Excluding only singletons is too lenient, but how does the the synthetic control inferred threshold (0.0156%) compare
to the default (0.1%)?

Here are the classifier assessment values using the lower inferred threshold which allows a lot of PCR noise:

$ head -n 2 summary/ctrl.ITS2.assess.1s5g.tsv
<SEE TABLE BELOW>

As a table:

#Species TP FP FN TN sensitiv-
ity

speci-
ficity

preci-
sion

F1 Hamming-
loss

Ad-hoc-
loss

OVER-
ALL

102 11 1 186 0.99 0.94 0.90 0.94 0.0400 0.105

Versus the stricter higher default abundance fraction which excludes most of the PCR noise:

4.7. Synthetic controls with fungal ITS2 103



THAPBI PICT, Release 1.0.13

$ head -n 2 summary/defaults.ITS2.assess.1s5g.tsv
<SEE TABLE BELOW>

As a table:

#Species TP FP FN TN sensitiv-
ity

speci-
ficity

preci-
sion

F1 Hamming-
loss

Ad-hoc-
loss

OVER-
ALL

92 8 11 189 0.89 0.96 0.92 0.91 0.0633 0.171

You could use the assessment metrics to help decide on your preferred threshold, depending on the best tradeoff for
your use-case.

Personally, of the these two I would pick the higher default threshold since it appears to exclude lots of PCR noise as
seen in the edit graphs. With the default 0.1% threshold:

Using the lower threshold there are roughly ten times as many ASVs. The more common ASV nodes become the centre
of a halo of 1bp variants, typically each seen in a single sample, which we attribute to PCR noise:
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The best choice of threshold may lie somewhere in between?
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Read-correction for denoising

Read-correction is an alternative or supplement to a stringent abundance filter for removing the noise of sequence
variants presumed to be PCR artefacts. Use --denoise as part of the pipeline or sample-tally commands to enable
our implementation of the UNOISE algorithm (Edgar 2016).

Adding this to the control-driven abundance threshold example drops the total unique read count from over 3 thousand
to just over 700:

$ grep -c "^ITS2" summary/ctrl_denoise.ITS2.tally.tsv
704
$ grep -c "^ITS2" summary/ctrl_denoise.ITS2.reads.1s5g.tsv
704

This gives an edit graph visually somewhere in between the examples above, with the obvious variant halos collapsed,
but some of the more complex chains of variants still present.

In terms of classifier assessment on the mock community, there is no change:

$ head -n 2 summary/ctrl_denoise.ITS2.assess.1s5g.tsv
<SEE TABLE BELOW>

As a table:

#Species TP FP FN TN sensitiv-
ity

speci-
ficity

preci-
sion

F1 Hamming-
loss

Ad-hoc-
loss

OVER-
ALL

102 11 1 186 0.99 0.94 0.90 0.94 0.0400 0.105

Looking at the reports, the read counts are of course different, but also some of the reads assigned a genus-only classi-
fication have been removed via the read-correction, so the taxonomy output does not directly match up either.

4.8 Soil Nematode Mock Community

Here we consider a mock community of over 20 soil nematodes (in triplicate), sequeced separately with four markers,
with no-template PCR control blanks:

Ahmed et al. (2019) Metabarcoding of soil nematodes: the importance of taxonomic coverage and
availability of reference sequences in choosing suitable marker(s) https://doi.org/10.3897/mbmg.3.36408
https://www.ebi.ac.uk/ena/data/view/PRJEB27581

This example requires creating a database covering the four different marker primers and known sequences (all of which
ought to be properly curated).
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4.8.1 Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest source code release (.tar.gz file).
You should find it contains a directory examples/soil_nematodes/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis discussed.

FASTQ data

File PRJEB27581.tsvwas download from the ENA and includes the FASTQ checksums, URLs, and sample metadata.

Script setup.sh will download the raw FASTQ files for Ahmed et al. (2019) from https://www.ebi.ac.uk/ena/data/
view/PRJEB27581

It will download 32 raw FASTQ files (16 pairs), taking 12GB on disk.

If you have the md5sum tool installed (standard on Linux), verify the FASTQ files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
...
$ cd ../

There is no need to decompress the files.

Amplicon primers & reference sequences

There were four separate markers used here, as shown in the paper’s Table 2 together with the shared Illumina adaptors
used.

The authors do not provide copies of their reference sequence databases with the paper. Instead, files NF1-18Sr2b.
fasta, SSUF04-SSUR22.fasta, D3Af-D3Br.fasta and JB3-JB5GED.fasta were based on the accessions listed in
the paper and close matches in the NCBI found with BLASTN against the NT database. Note many of the species
names have been reduced to just “Genus sp.” in line with the mock community entries, and all the fungal entries are
listed as just “Fungi”.

Metadata

File metadata.tsv is based on the ENA metadata and the paper text. It has four columns:

1. run_accession, assigned by the public archive, e.g. “ERR2678656”

2. read_count, the number of paired reads in the raw FASTQ files.

3. sample, one of “MC1”, “MC2”, “MC3” for the mock communities, or “Blank”

4. marker, one of “NF1-18Sr2b”, “SSUF04-SSUR22”, “D3Af-D3Br” or “JB3-JB5GED”

When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 4,3

Argument -t metadata.tsv says to use this file for the metadata.

Argument -c 4,3 says which columns to display and sort by. This means sample and then marker. The purpose here
is to group the samples logically (sorting on accession would not work), and suitable for group colouring.

Argument -x 1 (default, so not needed) indicates the filename stem can be found in column 1, run accession.
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Other files

The provided negative_control.known.tsv and mock_community.known.tsv files lists the expected species in
the negative controls (none) and the mock community samples (the same 23 species). Sub-folders under expected/
are created for each primer-pair, linking each accession name to either file as appropriate for assessing the classifier
performance.

Sub-folders under intermediate/ are used for intermediate files, a folder for each primer-pair.

4.8.2 High level overview

The high level summary is that all the samples have high coverage, much higher than most of the examples we have
used. The coverage also varies between samples - making a fractional minimum abundance threshold attractive here.
There is minimal off target signal (from the other primer sets), and the no template blanks have lower yields. The read
counts in the blanks are high, but happily do not appear to contain nematode sequence.

Per-marker yield

We’ll start by looking at the number of read-pairs found for each marker. After calling ./run.sh you should be able
to inspect these report files at the command line or in Excel.

$ cut -f 1,2,5-7,9,12 summary/NF1-18Sr2b.samples.onebp.tsv
<SEE TABLE BELOW>

Or open the Excel version summary/NF1-18Sr2b.samples.onebp.xlsx, and focus on those early columns:

#marker sample Raw FASTQ Flash Cutadapt Threshold Accepted
D3Af-D3Br Blank 1193593 1039205 0 25 0
D3Af-D3Br MC1 3897994 3317661 0 25 0
D3Af-D3Br MC2 4228233 3685150 0 25 0
D3Af-D3Br MC3 4309817 3864130 0 25 0
JB3-JB5GED Blank 69641 62060 0 25 0
JB3-JB5GED MC1 1236201 1157824 0 25 0
JB3-JB5GED MC2 2160885 2058441 1 25 0
JB3-JB5GED MC3 1204900 1139777 0 25 0
NF1-18Sr2b Blank 260778 218813 187776 25 140063
NF1-18Sr2b MC1 2483453 2126062 2109488 25 1394883
NF1-18Sr2b MC2 2349364 1985981 1972923 25 1359884
NF1-18Sr2b MC3 2435278 2088185 2070379 25 1409844
SSUF04-SSUR22 Blank 57199 46879 0 25 0
SSUF04-SSUR22 MC1 3162379 2633321 77 25 0
SSUF04-SSUR22 MC2 2790363 2370732 280 25 0
SSUF04-SSUR22 MC3 1953138 1640045 52 25 0

You should find the raw FASTQ numbers match the author’s Table 5, although that omits the blanks - which happily
are all much lower.

The “Flash” column reports how many of those raw FASTQ read pairs could be overlap merged into a single sequence
- and our numbers range from 82% to 95% (it is easy to add this calculation in Excel). This is very different from
the author’s results in Table 6, although we agree that the best yield was with the JB3-JB5GED markers. Exploring
the flash settings here, using -O or --allow-outies was important here to maximize yield, but that alone does not
explain this discrepancy.
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The “Cutadapt” column reports how many of those merged reads could be primer trimmed with the NF1-18Sr2b
primers, and happily we get high numbers only for the NF1-18Sr2b samples, but low levels from the other samples.
That could be barcode leakage in the demultiplexing, or actual unwanted DNA in the samples.

Then we have our “Threshold” and the final column highlighted here is the “Read count” after applying our minimum
abundance threshold - and now we only get reads from the NF1-18Sr2b samples. These are all 25 specified at the
command line with -a 25 in the script, and -f 0 to disable the fractional abundance threshold. This was done to
reduce the false negatives in the mock communities to be more in line with the original analysis.

We can repeat this for the other three primer sets, and the same pattern is observed - strong signal only for the match-
ing samples (with the blanks giving strong but lower counts), and all non-matching samples zero after the minimum
abundance threshold is applied.

Blank controls

The excellent news is even at this (much lower than default) minimum abundance threshold there are no recognisable
nematode sequences in any of the blanks.

Looking at the same sample reports (or the more detailed read reports), we see that while the blank samples with no PCR
template control give lots of reads, where they can be identified the organisms are not seen in the mock communities.
Quoting the paper:

Blank samples only yielded sequences of fungi and streptophyta.

In our case, we found lots of fungi and also the genus Urtica (which is a green plant under streptophyta), but also some
Blastocystis (Stramenopiles), Cercomonas (Rhizaria) and Sphaerularioidea (Opisthokonta).

$ for MARKER in NF1-18Sr2b SSUF04-SSUR22 D3Af-D3Br JB3-JB5GED; do \
grep $MARKER.Blank summary/$MARKER.samples.onebp.tsv | cut -f 1,2,4; \
done

<SEE TABLE EXCERPT BELOW>

Or manually looking at the four separate files - where column 4 is a text summary of the classifier output:

NF1-18Sr2b Blank Fungi (unknown species), Urtica sp., Unknown
SSUF04-
SSUR22

Blank Blastocystis sp., Fungi (unknown species), Unknown

D3Af-D3Br Blank Cercomonas sp., Fungi (unknown species), Sphaerularioidea gen. sp. EM-2016, Un-
known

JB3-JB5GED Blank Unknown

It should stressed that all the blank samples have unknown sequences (indeed the JB3-JB5GED blank sequences are
all reported as unknown).

4.8.3 Presence and absence

As discussed in the paper, the recognised species recovered from the mock community varied dramatically by marker.
This example has been setup with the same list of 23 species expected for all the markers.

Note that three of the four reference sets lack a known sequence for Laimaphelenchus penardi, and most are missing
more than just that species.

The run.sh script runs a classifier assessment over all the samples which is meaningful for the pooled results. There
is then a loop to assess each marker individually on the four relevant samples only.

We can compare these results to Ahmed et al. (2019) Table 9.
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NF1-18Sr2b

This marker has the best database coverage.

$ cut -f 1-5,9,11 summary/NF1-18Sr2b.assess.onebp.tsv
<SEE TABLE BELOW>

Or open this in Excel. You should find:

#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 52 60 17 191 0.57 0.597
Acrobeles sp. 0 0 3 1 0.00 1.000
Acrobeloides sp. 2 0 1 1 0.80 0.333
Alaimus sp. 1 0 2 1 0.50 0.667
Anaplectus sp. 0 0 3 1 0.00 1.000
Anatonchus tridentatus 3 0 0 1 1.00 0.000
Aphelenchoides sp. 3 0 0 1 1.00 0.000
Aporcelaimellus sp. 3 0 0 1 1.00 0.000
Criconema sp. 2 0 1 1 0.80 0.333
Ditylenchus dipsaci 3 0 0 1 1.00 0.000
Ditylenchus weischeri 0 3 0 1 0.00 1.000
Globodera achilleae 0 3 0 1 0.00 1.000
Globodera artemisiae 0 3 0 1 0.00 1.000
Globodera mexicana 0 3 0 1 0.00 1.000
Globodera pallida 0 3 0 1 0.00 1.000
Globodera rostochiensis 3 0 0 1 1.00 0.000
Globodera sp. 0 3 0 1 0.00 1.000
Globodera tabacum 0 3 0 1 0.00 1.000
Hemicycliophora sp. 1 0 2 1 0.50 0.667
Laimaphelenchus penardi 3 0 0 1 1.00 0.000
Longidorus caespiticola 3 0 0 1 1.00 0.000
Meloidogyne cf. hapla 8 JH-2014 0 3 0 1 0.00 1.000
Meloidogyne ethiopica 0 3 0 1 0.00 1.000
Meloidogyne hapla 3 0 0 1 1.00 0.000
Meloidogyne incognita 0 3 0 1 0.00 1.000
Plectus sp. 3 0 0 1 1.00 0.000
Prionchulus cf. punctatus TSH-2005 0 2 0 2 0.00 1.000
Prionchulus muscorum 0 2 0 2 0.00 1.000
Prionchulus punctatus 2 0 1 1 0.80 0.333
Pristionchus sp. 3 0 0 1 1.00 0.000
Rhabditis sp. 3 0 0 1 1.00 0.000
Steinernema carpocapsae 3 0 0 1 1.00 0.000
Steinernema monticolum 0 3 0 1 0.00 1.000
Steinernema sp. 0 3 0 1 0.00 1.000
Steinernema websteri 0 3 0 1 0.00 1.000
Trichodorus primitivus 3 0 0 1 1.00 0.000
Tripyla daviesae 0 3 0 1 0.00 1.000
Tripyla glomerans 0 0 3 1 0.00 1.000
Tripyla sp. 0 3 0 1 0.00 1.000
Tylenchus sp. 3 0 0 1 1.00 0.000
Urtica sp. 0 1 0 3 0.00 1.000
Xiphinema bakeri 0 2 0 2 0.00 1.000

continues on next page
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Table 2 – continued from previous page
#Species TP FP FN TN F1 Ad-hoc-loss
Xiphinema coxi europaeum 0 2 0 2 0.00 1.000
Xiphinema diversicaudatum 2 0 1 1 0.80 0.333
Xiphinema japonicum 0 2 0 2 0.00 1.000
Xiphinema pseudocoxi 0 2 0 2 0.00 1.000
Xiphinema vuittenezi 0 2 0 2 0.00 1.000
OTHER 34 SPECIES IN DB 0 0 0 136 0.00 0.000

We have explainable false positives as within genus conflicts in Ditylenchus, Globodera, Meloidogyne, Steinernema,
Prionchulus, Tripyla, and Xiphinema. Note expected species Tripyla glomerans is not reported.

Additionally there is an unexplained FP from plant Urtica sp. in the blank sample.

We also have false negatives, including reporting Anatonchus sp. rather than Anatonchus tridentatus, no Acrobeles sp.
in any of the three samples, and a few more not appearing in all the samples.

This is not performing as well as the authors’ analysis:

The NF1-18Sr2b had the highest coverage, producing 100% recovery of the sampled taxa (Table 9). All
23 taxa were detected in all three replicates, apart from Acrobeles and Criconema. They both failed to
appear in one of the replicates.

Perhaps our abundance threshold is still too high?

SSUF04-SSUR22

The assess command here warns the DB lacks 10 of the expected species in the mock community, which are therefore
false negatives.

$ cut -f 1-5,9,11 summary/SSUF04-SSUR22.assess.onebp.tsv
<SEE TABLE BELOW>

Or open this in Excel. You should find:
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#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 32 6 37 37 0.60 0.573
Acrobeles sp. 0 0 3 1 0.00 1.000
Acrobeloides sp. 2 0 1 1 0.80 0.333
Alaimus sp. 3 0 0 1 1.00 0.000
Anaplectus sp. 3 0 0 1 1.00 0.000
Anatonchus tridentatus 3 0 0 1 1.00 0.000
Aphelenchoides sp. 0 0 3 1 0.00 1.000
Aporcelaimellus sp. 3 0 0 1 1.00 0.000
Blastocystis sp. 0 1 0 3 0.00 1.000
Criconema sp. 0 0 3 1 0.00 1.000
Ditylenchus dipsaci 0 0 3 1 0.00 1.000
Globodera rostochiensis 0 0 3 1 0.00 1.000
Hemicycliophora sp. 0 0 3 1 0.00 1.000
Laimaphelenchus penardi 0 0 3 1 0.00 1.000
Longidorus caespiticola 3 0 0 1 1.00 0.000
Meloidogyne hapla 0 0 3 1 0.00 1.000
Plectus sp. 3 0 0 1 1.00 0.000
Prionchulus muscorum 0 3 0 1 0.00 1.000
Prionchulus punctatus 3 0 0 1 1.00 0.000
Prionchulus sp. 0 2 0 2 0.00 1.000
Pristionchus sp. 0 0 3 1 0.00 1.000
Rhabditis sp. 0 0 3 1 0.00 1.000
Steinernema carpocapsae 3 0 0 1 1.00 0.000
Trichodorus primitivus 3 0 0 1 1.00 0.000
Tripyla glomerans 0 0 3 1 0.00 1.000
Tylenchus sp. 0 0 3 1 0.00 1.000
Xiphinema diversicaudatum 3 0 0 1 1.00 0.000
OTHER 2 SPECIES IN DB 0 0 0 8 0.00 0.000

There are false positives within the genus Prionchulus (wrong species), and also from Blastocystis sp. in the blank.

We have TP for 11 species only. The original analysis reported recovering 15 out of 23 species with this marker (Table
9), and wrote:

In the case of the SSUF04-SSUR22 marker, eight taxa were missing from all three assignment methods.
The taxa that were recovered occurred in all three replicates. With all three methods of taxonomy assign-
ment combined, the number of correctly assigned OTUs improved to 56.

Many of our false negatives are likely due to the database coverage, with the Table 9 noting the majority of their
reference sequences from NCBI RefSeq were partial - our pipeline requires full length reference amplicons.

D3Af-D3Br

The assess command here warns the DB lacks three of the expected species in the mock community, Criconema sp.,
Laimaphelenchus penardi, and Steinernema carpocapsae - which are therefore false negatives.

$ cut -f 1-5,9,11 summary/D3Af-D3Br.assess.onebp.tsv
<SEE TABLE BELOW>

Or open this in Excel. You should find:
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#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 42 17 27 98 0.66 0.512
Acrobeles sp. 2 0 1 1 0.80 0.333
Acrobeloides sp. 0 0 3 1 0.00 1.000
Alaimus sp. 0 0 3 1 0.00 1.000
Anaplectus sp. 0 0 3 1 0.00 1.000
Anatonchus tridentatus 3 0 0 1 1.00 0.000
Aphelenchoides sp. 0 0 3 1 0.00 1.000
Aporcelaimellus sp. 3 0 0 1 1.00 0.000
Cercomonas sp. 0 1 0 3 0.00 1.000
Criconema sp. 0 0 3 1 0.00 1.000
Ditylenchus dipsaci 3 0 0 1 1.00 0.000
Globodera pallida 0 3 0 1 0.00 1.000
Globodera rostochiensis 3 0 0 1 1.00 0.000
Globodera sp. 0 3 0 1 0.00 1.000
Hemicycliophora sp. 1 0 2 1 0.50 0.667
Laimaphelenchus deconincki 0 3 0 1 0.00 1.000
Laimaphelenchus penardi 0 0 3 1 0.00 1.000
Longidorus caespiticola 3 0 0 1 1.00 0.000
Meloidogyne hapla 3 0 0 1 1.00 0.000
Plectus sp. 3 0 0 1 1.00 0.000
Prionchulus punctatus 3 0 0 1 1.00 0.000
Pristionchus sp. 3 0 0 1 1.00 0.000
Rhabditis sp. 3 0 0 1 1.00 0.000
Sphaerularioidea gen. sp. EM-2016 0 1 0 3 0.00 1.000
Steinernema carpocapsae 0 0 3 1 0.00 1.000
Trichodorus primitivus 3 0 0 1 1.00 0.000
Tripyla glomerans 3 0 0 1 1.00 0.000
Tylenchus sp. 0 0 3 1 0.00 1.000
Xiphinema bakeri 0 2 0 2 0.00 1.000
Xiphinema diversicaudatum 3 0 0 1 1.00 0.000
Xiphinema japonicum 0 2 0 2 0.00 1.000
Xiphinema sp. 0 2 0 2 0.00 1.000
OTHER 15 SPECIES IN DB 0 0 0 60 0.00 0.000

Most of the false positives are within the genus Globodera or Xiphinema, but additionally Cercomonas sp. and Sphaeru-
larioidea gen. sp. EM-2016. Note Laimaphelenchus deconincki is reported instead of the expected Laimaphelenchus
penardi here.

We have 15 species correctly identified (11 from all three samples), which exceeds authors’ analysis with UTAX but
falls short of their consensus:

The 28S rDNA-based D3Af-D3Br marker assigned 70 OTUs to nematodes and recovered all taxa except
Criconema in the consensus taxonomy. Amongst the recovered taxa, Hemicycliophora occurred in one of
the replicates, Acrobeles in two, while the rest were found in all three replicates.

Note that as per the paper Table 1, accessions MG994941 and MG994928 were used for Anatonchus tridentatus and
Tripyla glomerans, but required 34 and 35bp 3’ extensions respectively to cover the D3Af-D3Br amplicon (missing
sequenced inferred from the observed reads, and matches other nematode sequences).
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JB3-JB5GED

The assess command here warns the DB lacks 20 of the expected species in the mock community, which puts the results
into perspective:

$ cut -f 1-5,9,11 summary/JB3-JB5GED.assess.onebp.tsv
<SEE TABLE BELOW>

Or open this in Excel. You should find:

#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 9 3 60 24 0.22 0.875
Acrobeles sp. 0 0 3 1 0.00 1.000
Acrobeloides sp. 0 0 3 1 0.00 1.000
Alaimus sp. 0 0 3 1 0.00 1.000
Anaplectus sp. 0 0 3 1 0.00 1.000
Anatonchus tridentatus 0 0 3 1 0.00 1.000
Aphelenchoides sp. 0 0 3 1 0.00 1.000
Aporcelaimellus sp. 0 0 3 1 0.00 1.000
Criconema sp. 0 0 3 1 0.00 1.000
Ditylenchus dipsaci 0 0 3 1 0.00 1.000
Globodera rostochiensis 3 0 0 1 1.00 0.000
Hemicycliophora sp. 0 0 3 1 0.00 1.000
Laimaphelenchus penardi 0 0 3 1 0.00 1.000
Longidorus caespiticola 0 0 3 1 0.00 1.000
Meloidogyne hapla 3 0 0 1 1.00 0.000
Plectus sp. 0 0 3 1 0.00 1.000
Prionchulus punctatus 0 0 3 1 0.00 1.000
Pristionchus sp. 0 0 3 1 0.00 1.000
Rhabditis sp. 0 0 3 1 0.00 1.000
Steinernema abbasi 0 3 0 1 0.00 1.000
Steinernema carpocapsae 3 0 0 1 1.00 0.000
Trichodorus primitivus 0 0 3 1 0.00 1.000
Tripyla glomerans 0 0 3 1 0.00 1.000
Tylenchus sp. 0 0 3 1 0.00 1.000
Xiphinema diversicaudatum 0 0 3 1 0.00 1.000

This has performed perfectly on Meloidogyne hapla, Globodera rostochiensis, and Steinernema carpocapsae - although
we also get false positive matches to sister species Steinernema abbasi.

This is better than the authors analysis, which did not find Globodera:

For the COI-based JB3-JB5GED marker, even the consensus taxonomy drawn from all three assignment
methods could only recover two taxa, namely Meloidogyne and Steinernema.
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Pooled

The pipeline is setup to assess the pooled results expecting all 23 species in each mock community, regardless of which
marker was being sequenced. i.e. This is handicapped by adding up to 9 false negatives per species.

$ cut -f 1-5,9,11 summary/pooled.assess.onebp.tsv
<SEE TABLE BELOW>

Or open this in Excel. You should find:

#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 135 86 141 1142 0.54 0.627
Acrobeles sp. 2 0 10 4 0.29 0.833
Acrobeloides sp. 4 0 8 4 0.50 0.667
Alaimus sp. 4 0 8 4 0.50 0.667
Anaplectus sp. 3 0 9 4 0.40 0.750
Anatonchus tridentatus 9 0 3 4 0.86 0.250
Aphelenchoides sp. 3 0 9 4 0.40 0.750
Aporcelaimellus sp. 9 0 3 4 0.86 0.250
Blastocystis sp. 0 1 0 15 0.00 1.000
Cercomonas sp. 0 1 0 15 0.00 1.000
Criconema sp. 2 0 10 4 0.29 0.833
Ditylenchus dipsaci 6 0 6 4 0.67 0.500
Ditylenchus weischeri 0 3 0 13 0.00 1.000
Globodera achilleae 0 3 0 13 0.00 1.000
Globodera artemisiae 0 3 0 13 0.00 1.000
Globodera mexicana 0 3 0 13 0.00 1.000
Globodera pallida 0 6 0 10 0.00 1.000
Globodera rostochiensis 9 0 3 4 0.86 0.250
Globodera sp. 0 6 0 10 0.00 1.000
Globodera tabacum 0 3 0 13 0.00 1.000
Hemicycliophora sp. 2 0 10 4 0.29 0.833
Laimaphelenchus deconincki 0 3 0 13 0.00 1.000
Laimaphelenchus penardi 3 0 9 4 0.40 0.750
Longidorus caespiticola 9 0 3 4 0.86 0.250
Meloidogyne cf. hapla 8 JH-2014 0 3 0 13 0.00 1.000
Meloidogyne ethiopica 0 3 0 13 0.00 1.000
Meloidogyne hapla 9 0 3 4 0.86 0.250
Meloidogyne incognita 0 3 0 13 0.00 1.000
Plectus sp. 9 0 3 4 0.86 0.250
Prionchulus cf. punctatus TSH-2005 0 2 0 14 0.00 1.000
Prionchulus muscorum 0 5 0 11 0.00 1.000
Prionchulus punctatus 8 0 4 4 0.80 0.333
Prionchulus sp. 0 2 0 14 0.00 1.000
Pristionchus sp. 6 0 6 4 0.67 0.500
Rhabditis sp. 6 0 6 4 0.67 0.500
Sphaerularioidea gen. sp. EM-2016 0 1 0 15 0.00 1.000
Steinernema abbasi 0 3 0 13 0.00 1.000
Steinernema carpocapsae 9 0 3 4 0.86 0.250
Steinernema monticolum 0 3 0 13 0.00 1.000
Steinernema sp. 0 3 0 13 0.00 1.000
Steinernema websteri 0 3 0 13 0.00 1.000

continues on next page
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Table 4 – continued from previous page
#Species TP FP FN TN F1 Ad-hoc-loss
Trichodorus primitivus 9 0 3 4 0.86 0.250
Tripyla daviesae 0 3 0 13 0.00 1.000
Tripyla glomerans 3 0 9 4 0.40 0.750
Tripyla sp. 0 3 0 13 0.00 1.000
Tylenchus sp. 3 0 9 4 0.40 0.750
Urtica sp. 0 1 0 15 0.00 1.000
Xiphinema bakeri 0 4 0 12 0.00 1.000
Xiphinema coxi europaeum 0 2 0 14 0.00 1.000
Xiphinema diversicaudatum 8 0 4 4 0.80 0.333
Xiphinema japonicum 0 4 0 12 0.00 1.000
Xiphinema pseudocoxi 0 2 0 14 0.00 1.000
Xiphinema sp. 0 2 0 14 0.00 1.000
Xiphinema vuittenezi 0 2 0 14 0.00 1.000
OTHER 41 SPECIES IN DB 0 0 0 656 0.00 0.000

As expected from the per-marker results, the false positives are largely due to species level difficulties within the genera
including Globodera, Steinernema, Tripyla, and Xiphinema.

While many of the number of false negatives may be down to database coverage, it would also be worth exploring
further dropping the minimum abundance threshold.

4.9 Pest Insect Mock Communities

Here we consider mock communities of up to six insect species, sequenced with three pooled markers (18S, 12S, COI),
with no-template PCR control blanks:

Batovska et al. (2021) Developing a non-destructive metabarcoding protocol for detec-
tion of pest insects in bulk trap catches https://doi.org/10.1038/s41598-021-85855-6 https:
//www.ebi.ac.uk/ena/data/view/PRJNA716058 https://zenodo.org/record/3557020 https://github.
com/alexpiper/HemipteraMetabarcodingMS

This example requires creating a database covering the three different marker primers and known sequences (all of
which ought to be properly curated).

4.9.1 Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest source code release (.tar.gz file).
You should find it contains a directory examples/pest_insects/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis discussed.
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FASTQ data

File PRJNA716058.tsv was download from the ENA and includes the FASTQ checksums, URLs, and sample meta-
data.

Script setup.sh will download the raw FASTQ files for Batovska et al. (2021) from https://www.ebi.ac.uk/ena/data/
view/PRJNA716058

It will download 60 raw FASTQ files (30 pairs), taking 7.9 GB on disk.

If you have the md5sum tool installed (standard on Linux), verify the FASTQ files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
...
$ cd ../

There is no need to decompress the files.

Amplicon primers & reference sequences

Three separate markers used here, as shown in the paper’s Supplementary Table S2, together with the shared Illumina
adaptors used.

The authors provide their reference species level sequences as a compressed FASTA file
merged_arthropoda_rdp_species.fa.gz on the GitHub repository for the paper: https://github.com/alexpiper/
HemipteraMetabarcodingMS

The worked example applies the three primer-pairs to this FASTA file to make an amplicon specific FASTA file for
each marker.

Metadata

File metadata.tsv is based on the ENA metadata and the paper text. It has four columns:

1. run_accession, assigned by the public archive, e.g. “SRR14022295”

2. sample_alias, e.g. “100-Pool-1” or “Trap-1”

3. source, e.g. one of the mock communities like “Pool 1”, or “Trap”

4. individuals, e.g. “0100” (with leading zero for sorting) or “-” for traps.

When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 3,4,2

Argument -t metadata.tsv says to use this file for the metadata.

Argument -c 3,4,2 says which columns to display and sort by. This means by source (i.e. which mock community, or
environmental traps), then number of individuals in the mock, and finally the human readable sample alias. The purpose
here is to group the samples logically (sorting on sample_alias would not work), and suitable for group colouring.

Argument -x 1 (default, so not needed) indicates the filename stem can be found in column 1, run accession.
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Other files

Files mock_community_1.known.tsv, . . . , mock_community_5.known.tsv list the expected species in the five
different mock community pools. The setup script will create symlinks using the sample names under sub-folder
expected/ pointing at the relevant community known file. This is for automatically assessing the classifier perfor-
mance.

Sub-folders under intermediate/ are used for intermediate files, a folder for each primer-pair.

4.9.2 High level overview

The high level summary is that all the samples have high coverage, much higher than most of the examples we have
used. Some of the samples yield over a million reads for the COI and 12S amplicons, which with the default fractional
minimum abundance threshold of 0.1% (-f 0.001) would mean using over 1000 reads as the threshold. This was too
stringent, so the worked example reduces this to 0.01% (with -f 0.0001) matching the author’s analysis, and dropped
the default absolute abundance threshold of 100 to 50 (with -a 50).

Note that the rarest members of the mock communities are expected from 1 in 500 individuals (0.02%) or 1 in 1000
individuals (0.01%), which is ten times higher than the fractional abundance threshold.

Sequence yield

We’ll start by looking at the number of read-pairs found for each marker. After calling ./run.sh you should be able
to inspect these report files at the command line or in Excel.

$ cut -f 3,6-8,10,12-14 summary/COI.samples.onebp.tsv
<SEE TABLE BELOW>

Or open the Excel version summary/COI.samples.onebp.xlsx, and focus on those early columns:

sample_alias Raw FASTQ Flash Cutadapt Threshold Singletons Accepted Unique
100-Pool-1 478705 474621 109233 50 11074 86402 178
250-Pool-1 1845819 1829913 157310 50 23119 118383 251
500-Pool-1 647776 643030 51092 50 6446 36718 127
1000-Pool-1 855997 848914 66002 50 7967 49058 149
100-Pool-2 737998 732014 432826 50 29168 368249 418
250-Pool-2 2037475 2022814 1250718 126 85718 1042562 482
500-Pool-2 1908370 1895715 1231908 124 59702 1042441 442
1000-Pool-2 1068715 1060596 584017 59 33060 498955 445
100-Pool-3 950692 940342 249422 50 24964 189156 371
250-Pool-3 1631700 1615113 274422 50 39974 192944 562
500-Pool-3 923807 916621 358429 50 32221 284819 567
1000-Pool-3 1773647 1758637 468361 50 42263 374487 733
100-Pool-4 634017 628523 117499 50 14596 74799 175
250-Pool-4 2501145 2480381 441558 50 61904 324512 707
500-Pool-4 572779 568565 144488 50 18279 96537 306
1000-Pool-4 1198812 1189853 294607 50 30130 220678 470
100-Pool-5 1817929 1800594 434739 50 45224 329015 660
250-Pool-5 1632786 1617219 440995 50 58159 328842 729
500-Pool-5 807060 801471 321428 50 30944 247519 484
1000-Pool-5 1423279 1411512 332286 50 32751 255309 584
Trap-1 1759819 1719671 110882 50 19740 73024 251

continues on next page
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Table 5 – continued from previous page
sample_alias Raw FASTQ Flash Cutadapt Threshold Singletons Accepted Unique
Trap-10 2445993 2420303 308371 50 58670 204842 480
Trap-2 1127739 1107970 110856 50 24385 55757 92
Trap-3 2422054 2366037 161686 50 30631 110043 268
Trap-4 742893 732907 63107 50 11933 35225 77
Trap-5 3437292 3346620 346696 50 71464 208989 542
Trap-6 697389 689125 91284 50 17153 57037 149
Trap-7 2853448 2820200 223330 50 31011 169121 319
Trap-8 2196646 2161966 146646 50 28814 92632 220
Trap-9 2065455 2049024 70591 50 14636 40131 109

The marker specific tables show the threshold applied was usually 50, the default absolute value set via -a 50 at the
command line. Occasionally this has been increased to 0.1% of the sequences matching the primers for this marker,
set via -f 0.0001 at the command line.

The numbers are similar for the 12S and 18S markers, or pooling them all:

$ cut -f 3,6,7,13,14 summary/pooled.samples.onebp.tsv
<SEE TABLE BELOW>

Again, alternatively open Excel file summary/pooled.samples.onebp.xlsx, and focus on those early columns:

sample_alias Raw FASTQ Flash Accepted Unique
100-Pool-1 478705 474621 371045 703
250-Pool-1 1845819 1829913 1508292 689
500-Pool-1 647776 643030 522396 800
1000-Pool-1 855997 848914 692639 950
100-Pool-2 737998 732014 587902 886
250-Pool-2 2037475 2022814 1243165 837
500-Pool-2 1908370 1895715 1551757 1142
1000-Pool-2 1068715 1060596 863574 1024
100-Pool-3 950692 940342 684297 1479
250-Pool-3 1631700 1615113 1158575 1241
500-Pool-3 923807 916621 697552 1457
1000-Pool-3 1773647 1758637 1366298 1993
100-Pool-4 634017 628523 451801 879
250-Pool-4 2501145 2480381 1867605 1171
500-Pool-4 572779 568565 416456 925
1000-Pool-4 1198812 1189853 918004 1660
100-Pool-5 1817929 1800594 1369274 1918
250-Pool-5 1632786 1617219 1128901 1475
500-Pool-5 807060 801471 603390 1276
1000-Pool-5 1423279 1411512 1104412 1716
Trap-1 1759819 1719671 392775 919
Trap-10 2445993 2420303 492325 1079
Trap-2 1127739 1107970 129956 273
Trap-3 2422054 2366037 427533 953
Trap-4 742893 732907 232800 403
Trap-5 3437292 3346620 486282 1177
Trap-6 697389 689125 80003 170
Trap-7 2853448 2820200 1158684 842

continues on next page
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Table 6 – continued from previous page
sample_alias Raw FASTQ Flash Accepted Unique
Trap-8 2196646 2161966 683669 1024
Trap-9 2065455 2049024 1352408 689

The “Accepted” column is the number of reads matching the primer pairs and passing our abundance thresholds. The
fraction accepted varies from 61% to 82% for the mock community samples, but is considerably lower for the environ-
mental traps, varying from 11% to 65%. Much of that would be noise and trace level environmental DNA.

The “Unique” column is the number of accepted unique sequences. For the mock communities this should be up to 18
with at most six species each, and three markers. The observed counts are much higher, so we might want to denoise,
or and/or raise the abundance threshold higher. Dropping it further does raise the false positive rate inferred from the
mock communities.

4.9.3 Presence and absence

This example includes mock communities which are a controlled setup where we know what the classifier ought ideally
to report for every sample - and all their expected marker sequences are in the classification database.

There are five different mock communities, made up with different numbers of individuals. Running an overall assess-
ment on the pooled species assignments from all three markers we have both false positives, and false negatives:

$ cut -f 1-5,9,11 summary/pooled.assess.onebp.tsv
<SEE TABLE BELOW>

As a table:

#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 85 21 3 1104331 0.88 0.220
Acizzia alternata 16 1 0 3 0.97 0.059
Acizzia solanicola 16 1 0 3 0.97 0.059
Bactericera cockerelli 10 0 2 8 0.91 0.167
Diuraphis noxia 11 3 1 5 0.85 0.267
Metopolophium dirhodum 16 0 0 4 1.00 0.000
Rhopalosiphum nymphaeae 0 16 0 4 0.00 1.000
Rhopalosiphum padi 16 0 0 4 1.00 0.000
OTHER 55215 SPECIES IN DB 0 0 0 1104300 0.00 0.000

Our 3 false negatives on the pooled results are Bactericera cockerelli (2 cases, 1000-Pool-1` and ``250-Pool-4
matching the authors, with 500-Pool-4 just passing at 62 reads), and Diuraphis noxia (1 case, 500-Pool-3). The
authors also reported 500-Pool-3 missing D. noxia, here it just passes the threshold at 54 reads.

Most of the false positives are 16 cases of Rhopalosiphum nymphaeae, which is unfortunately indistinguishable from
community member R. padi with the 12S marker (see the thapbi_pict conflicts ... output).

Likewise splitting Acizzia alternata and solanicola is not possible with 18S, but we still have unwanted Acizzia alternata
and solanicola from 12S in 500 Pool 2, with 53 and 96 reads respectively. These counts are low enough to consider
raising the abundance threshold(s) to exclude them. In both cases they match the dominant 12S sequences from the
other controls and could be due to Illumina tag switching?

The remaining false positives are 3 cases of Diuraphis noxia via the 18S marker, and in one case via the COI marker.

The authors only reported false positives for Diuraphis noxia in one sample, 1000-Pool-1 for both COI and 18S
(Figure 3), traced to an unwanted nymph specimen (Figure 4). We see that too, but have two other false positives:
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$ cut -f 3,37,38 summary/pooled.samples.onebp.tsv
<SEE TABLE BELOW>

Note 576 unwanted reads in 1000-Pool-1 for Diuraphis noxia (consistent with the author’s analysis), but also 503 reads
in 100-Pool-5 and 63 in 1000-Pool-5 with a fuzzy match for Diuraphis noxia and/or Metopolophium dirhodum:

sample_alias Diuraphis noxia Diuraphis noxia;Metopolophium dirhodum
100-Pool-1 0 0
250-Pool-1 0 0
500-Pool-1 0 0
1000-Pool-1 576 0
100-Pool-2 1630 0
250-Pool-2 1454 0
500-Pool-2 1660 0
1000-Pool-2 228 0
100-Pool-3 2705 126
250-Pool-3 4059 0
500-Pool-3 0 0
1000-Pool-3 94 0
100-Pool-4 6446 113
250-Pool-4 5701 0
500-Pool-4 742 0
1000-Pool-4 684 54
100-Pool-5 0 503
250-Pool-5 0 0
500-Pool-5 0 0
1000-Pool-5 0 63
Trap-1 25009 135
Trap-10 126570 53
Trap-2 106 0
Trap-3 272 0
Trap-4 1351 0
Trap-5 4235 0
Trap-6 16758 0
Trap-7 2733 0
Trap-8 99678 53
Trap-9 37358 0

Consulting the read report, these Diuraphis noxia false positives from 100-Pool-5 (503 copies) and 1000-Pool-5
(just 63 copies) are from the same 18S sequence:

>d153aa679f3c184a2790cd26aac9c784
CCGCATTAAGGTGAAACCGCGAAAGGCTCATTAAATCAGTTGTGGTTCCTTAGATCGTACCCAAGTTACTTGGATAACTG
TGGTAATTCTAGAGCTAATACATGCCGACAGAGTTCCGACCGTCGCGGCGCCCTCGGGCGTCGCGCGCGGGAGGAACGCT
TTTATTAGATCAAAACCGGCCCGTCGCGGCGCGCTTCGTGCGCGTCCCGATCGCGGCCCGCGCAAAGACCTGGTGACTCT
GAATAACTTCGAGCTGATCGCACGGTCTCCGTACCGGCGACGCATCTTTCAAAT

With over 500 copies in 100-Pool-5 this cannot be dismissed as a difference in noise filtering versus the authors’
original analysis. Querying this on NCBI BLAST confirms it to be 1bp away from multiple Diuraphis noxia accessions,
and a Metopolophium dirhodum voucher sequence (as in the DB here), but also third species via a sequence labelled as
Acyrthosiphon pisum. Rather than reporting multiple conflicting species, the author’s pipeline likely assigned a lower
rank?
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Visualisation

We can look at this visually by reproducing Figure 3 from the original paper. The authors provided their R based
analysis, from which I have exported the numbers used to draw the figure (see figure3original.R) giving a sim-
ple tab-separated file (figure3original.tsv). Likewise the Python script figure3reproduction.py will pro-
duce an equivalent table using the output from THABPI PICT (figure3reproduction.tsv). Finally, Python script
recreate_figure3.py uses MatPlotLib to reproduce an annotated recreation of the original.

Original analysis:

This re-analysis:
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In the original paper the false positives and false negatives were marked with pluses and minus in colour coded circles,
and these were added by hand. Here this annotation is automated, but is less aesthetically pleasing. The false negatives
get a cross, false positives are shown with an exclamation mark, and furthermore low abundance (under 5%) true
positives get a tick. Again, these are all species coloured.

Overall this seems to show very good agreement with the published analysis.

4.10 Endangered Species Mixes 16S etc

This is the most complicated of the examples considered, where most of the samples are “Experimental mixtures” of
multiple plants and animals (plus two traditional medicine mixtures where the exact content is unknown), which have
all been sequenced with about a dozen different primer pairs for multiple metabarcoding markers including 16S, COI,
cyt-b, matK, rbcL, trnL and ITS2:

Arulandhu et al. (2017) Development and validation of a multi-locus DNA metabarcoding method to
identify endangered species in complex samples. https://doi.org/10.1093/gigascience/gix080

This example requires creating a database of multiple markers (all of which ought to be properly curated). Both per-
marker reports and a pooled report are generated by the pipeline.
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4.10.1 Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest source code release (.tar.gz file).
You should find it contains a directory examples/endangered_species/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis discussed - although the documentation will take
you though this step by step.

Under the intermediate/ folder will be a subdirectory for each of the primer settings, and the primer name is used
as a prefix for the reports in summary/.

Compared to the other examples, there is an additional tmp_merged/ subfolder which contains gzipped FASTA files
after quality trimming and merging overlapping paired reads into single sequences - but prior to applying the various
primers and abundance thresholds.

FASTQ data

File PRJEB18620.tsv was download from the ENA and includes the raw data checksums, URLs, but lacks any sample
metadata.

Script setup.shwill download the raw FASTQ files for Arulandhu et al. (2017) from https://www.ebi.ac.uk/ena/data/
view/PRJEB18620

It will download 354 raw FASTQ files (177 pairs), taking about 6.5GB on disk. The 177 sequenced samples are made
up of 17 experimental mixtures (including only two with replicates, 1.1GB) and 160 inter-laboratory trials (16 samples
repeated in 10 laboratories, 5.4GB).

This script first downloads files from the ENA under raw_downloads/ (a mix of *.zip and *.fastq.gz files), and
then sets up consistently named and compressed entries under raw_data/*.fastq.gz instead.

If you have the md5sum tool installed (standard on Linux), verify the files downloaded correctly:

$ cd raw_download/
$ md5sum -c MD5SUM.txt
...
$ cd ..

There is no need to decompress the files.

Amplicon primers & reference sequences

All the samples were all amplified with a dozen primers (see Table 1). To interpret the data properly you would need a
well curated database for each marker - FASTA files are provided to build a rudimentary database.

Files references/*.fasta were compiled by hand on an ad hoc basis to use for pre-trimmed reference databases.
They should not be used as is in any serious analysis. In many cases ambiguous matches have been omitted in preference
of just species expected in the control mixtures. For example, only recording Brassica napus and Brassica oleracea
despite some markers being shared by Brassica juncea or Brassica nigra etc. In more extreme cases, markers are
clearly not even genus specific, but again only the control mixture representative appears - e.g. Carica papaya, Glycine
max, Gossypium hirsutum, Lactuca sativa, Solanum lycopersicum. Deliberately reducing the false positives from these
ambiguous marker sequences was done for illustrative purposes only.

Note that false positives remain, for example an ITS2 sequence most likely from Lactuca sativa in the control mixture
is just one base pair away from a published sequence from that species (KM210323.1), but perfectly matches published
sequences from Lactuca altaica, L. serriola and L. virosa.
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Metadata

The sample metadata on the ENA is minimal, although the NCBI SRA has longer descriptions. For example run
ERS1545972 from sample SAMEA80893168 aka EM_1 has title “Experimental mixture 1” but only the NCBI has de-
scription “Experimental mixture containing 99% Bos taurus and 1% Lactuca sativa”. Or, run ERS1546502 from sample
SAMEA81290668 aka S1_Lab_1 has title “Interlaboratory trial” while the NCBI also has the description “Experimental
mixture containing 1% Zea mays, 1% Glycine max, 1% Aloe variegata, 1% Dendrobium sp., 1% Huso Dauricus, 1%
Crocodylus niloticus, 47% Brassica oleracea and 47% Bos taurus, in dry weight percentages”.

File PRJEB18620.tsvwith the descriptions on the NCBI SRA, supplemented by Table 7, was used to write metadata.
tsv, which has the following columns:

1. run_accessions, e.g. “ERR1824060;ERR1824061;. . . ;ERR1824075”

2. run_names, e.g. “EM_1” or “S1_Lab_1;S1_Lab_2;. . . ;S1_Lab_16”

3. group, “Experimental mixture” or “Interlaboratory trial”

4. sample, e.g. “EM_1” or “S1”

5. description, e.g. “Experimental mixture containing 1% Zea mays, 1% Glycine max, 1% Aloe variegata, 1%
Dendrobium sp., 1% Huso Dauricus, 1% Crocodylus niloticus, 47% Brassica oleracea and 47% Bos taurus, in
dry weight percentages.”

Note we have a single row for each set of replicates (two cases in the initial “Experimental mixture” set, and 16 lab-
oratories for each of the 10 “Interlaboratory trial” samples), cross referenced to the individual runs with semi-colon
separated lists in columns 1 (accession) and 2 (filename).

When calling THAPBI PICT, the metadata commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -c 3,4,5 -x 2 -g 4

Argument -c 3,4,5 says which columns to display and sort by. This means group, sample, description. Given the
sample prefix naming, putting the group first is not essential for sorting, but is logical.

Argument -x 2 indicates the filename stem can be found in column 2. Unlike most of the worked examples, we are
not using the accession filenames here.

Argument -g 4 means assign colour bands using sample. This gives 15 thin bands for the “Experimental mixture” set,
and then 10 wide bands for the “Interlaboratory trial” samples. By chance the two traditional medicine samples both
get wide green bands in the Excel reports.

Other files

Files expected/*.known.tsv were compiled by hand from the species content of the experimental samples (using
the PRJEB18620 sample descriptions on the NCBI and Table 7).

4.10.2 Universal animal DNA barcodes and mini-barcodes

For 16S, COI and cyt-b the paper used two targets, a long barcode and a shorter mini-barcode. The same names have
been used in the run.sh script provided, the output of which is referred to below.
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16S - long marker

The 16S primer set output is disappointing at the default abundance threshold, with only a single unique sequence
observed - I suspect the long product size is part of the issue, it must be at the upper limit for overlapping MiSeq read
pairs?

$ grep -v "^#" summary/16S.tally.tsv | cut -f 1,179
16S/1f2b15d58f9f40b862486676809d4744_20189 ␣
→˓CACCTCCAGCATTCCCAGTATTGGAGGCATTGCCTGCCCAGTGACAACTGTTTAACGGCCGCGGTATCCTGACCGTGCAAAGGTAGCATAATCATTTGTTCTCTAAATAAGGACTTGTATGAATGGCCGCACGAGGGTTTTACTGTCTCTTACTTCCAATCAGTGAAATTGACCTTCCCGTGAAGAGGCGGGAATGCACAAATAAGACGAGAAGACCCTATGGAGCTTTAACTAACCAACCCAAAGAGAATAGATTTAACCATTAAGGAATAACAACAATCTCCATGAGTTGGTAGTTTCGGTTGGGGTGACCTCGGAGAATAAAAAATCCTCCGAGCGATTTTAAAGACTAGACCCACAAGTCAAATCACTCTATCGCTCATTGATCCAAAAACTTGATCAACGGAACAAGTTACCCTAGGGATAACAGCGCAATCCTATTCAAGAGTCCATATCGACAATAGGGTTTACGACCTCGATGTTGGATCAGGACATCCTGATGGTGCAACCGCTATCAAAGGTTCGTTTGTTCAACGATTAAAGTCCT

This perfectly matches Bos taurus and was found in most but not all of the samples expected - perhaps the default
abundance threshold is too high?

Mini-16S - short marker

The output from the Mini-16S marker is far more diverse, with 84 unique sequences:

$ grep -c -v "^#" summary/Mini-16S.tally.tsv
84

The most common is again a perfect match to Bos taurus, which this time has no false negatives (but two false posi-
tives?).

We have all the expected Sus scrofa matches, and some of Gallus gallus and Anguilla anguilla expected in six samples.
Crocodylus niloticus is also found but at far lower levels than expected.

We do see Homo sapiens, but happily only in the traditional medicine samples (multiple replicates within S3 and S8).
Within those samples, the laboratory 16 replicates S3_Lab_16 and S8_Lab_16 also had Rattus tanezumi and Rattus
norvegicus too, respectively.

Overall, again perhaps the default abundance threshold is too high?

COI - long marker

Assuming I understood the paper correctly, this used a pool of four left primers and four right primers. That is not
easily handled with THAPBI PICT at the time of writing.

Mini-COI - short marker

The output from the Mini-COI marker is quite diverse, with 22 unique sequences:

$ grep -c -v "^#" summary/Mini-COI.tally.tsv
22

The species matches are all reasonable, it detects all the Pieris brassicae, most of the Bos taurus, Pleuronectes platessa,
Sus scrofa, many of the Huso dauricus and Gallus gallus.

We have unexpected Acipenser schrenckii, which was also found in the paper and explained due to sample preparation.

There are also plenty of unclassified sequences from the traditional medicine samples, based on an NCBI BLAST
search many are likely from undescribed fungi.
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cyt-b - long marker

This gave no sequences at the default abundance threshold, nor at 50. Dropping to 10 we get a modest number of hits
- the only perfect match was unfortunately to plants in the Asteraceae family.

Mini-cyt-b - short marker

The output from the Mini-COI marker had only 17 unique sequences:

$ grep -c -v "^#" summary/Mini-cyt-b.tally.tsv
17

This found all the expected Sus scrofa and Meleagris gallopavo, and most Bos taurus, Crocodylus niloticus, Huso
dauricus and some of the Anguilla anguilla.

As above, we have explained false matches for Acipenser schrenckii, and again Homo sapiens in the traditional medicine
but also in EM_8.

4.10.3 Universal plant DNA barcodes and mini-barcodes

As in the animal primers, for rbcL the paper used two targets, a long barcode and a shorter mini-barcode. The same
names have been used in the run.sh script provided, the output of which is referred to below.

matK

The paper described two sets of primers for matK, although only one was used for the MiSeq sequencing. This gave no
sequences at the default abundance threshold, dropping to 50 showed three uniques sequences in three files, and even
dropping to 10 only gave results from EM_2, EM_14 and S8.

NCBI BLAST of these sequence gave no perfect matches, but suggested Sanguisorba sp. was present, noted in the
original paper for S8 which is one of the traditional medicine samples.

rbcL - long target

Using our default abundance threshold and the author’s minimum length of 140bp, we got no sequences at all. Allowing
a minimum length of 100 (our default) gave the following sequence and a one SNP variant, all from S3:

>3ec67342f519461a0ad40fef436b1b1d
GACTGCGGGGTTCAAAGCTGGTGTTAAAGATTATAGATTGACGTATTATACTCCTGAATTGGGGTTATCCGCTAAGAATT
ACGGTAGAGCAGTTTATGAATGTCTT

The best NCBI BLAST matches are Astragalus, but with a break point. The authors of the original paper report finding
Astragalus danicus in S3.
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Mini-rbcL - short target

This was by far and above the most diverse in terms of unique sequences recovered:

$ grep -c -v "^#" summary/Mini-rbcL.tally.tsv
278

We see expected plant species like Lactuca sativa, Brassica oleracea, Aloe variegata and Dendrobium sp. - exactly
how they are classified depends critically on how the database is built.

The traditional medicine samples have multiple unknown sequences likely of plant origin.

The edit-graph is the most complicated of those in this dataset - not simply in terms of the number of nodes. This
marker needs more careful review before using THAPBI PICT’s default onebp classifier.

trnL-UAA

Not very diverse, only eight unique sequences recovered:

$ grep -c -v "^#" summary/trnL-UAA.tally.tsv
8

We see lots of Brassica, the difficulties with Brassica oleracea vs Brassica napus (and the genus in general) are dis-
cussed in the paper too.

trnL-P6-loop

Initially I saw no sequences with this marker, even disabling the abundance threshold. This was strange, however easily
explained - quoting the paper:

We implemented a minimum DNA barcode length of 200 nt, except for DNA barcodes with a basic length
shorter than 200 nt, in which case the minimum expected DNA barcode length is set to 100 nt for ITS2,
140 nt for mini-rbcL, and 10 nt for the trnL (P6 loop) marker.

Therefore in run.sh we have changed the THAPBI PICT minimum length from 100 (our default) to 10 for this marker
- and now get lots, over a hundred unique sequences:

$ grep -c -v "^#" summary/trnL-P6-loop.tally.tsv
134

We find this dominated by Brassica oleracea in most samples. However, at our default abundance threshold we do not
find Cycas revoluta which is consistent with the original analysis reporting this at very low abundance.

Our reference set here has Aloe reynoldsii sequences, but none for the expected entry Aloe variegata.

An obvious false positive here is Cullen sp. which like the authors we found in the S3 traditional medicine, but also
unexpectedly in all the S1 samples.
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ITS2

Quite diverse, with over fifty unique sequences recovered:

$ grep -c -v "^#" summary/ITS2.tally.tsv
59

Finds all the Brassica and Echinocactus sp., most of the Euphorbia sp.

We do see unexpected matches to Lactuca sp. where Lactuca sativa was in the experimental mixture. The dominant
sequence present is just one base pair away from a published sequence from that species (KM210323.1), but perfectly
matches published sequences from Lactuca altaica, L. serriola and L. virosa - and that is what was in the sample
database. If you open the associated edit-graph file (ITS2.edit-graph.onebp.xgmml) in Cytoscape, you can see
this quite clearly.

4.10.4 Pooled animal and plant DNA barcodes

We have very briefly reviewed the output of each of the animal and plant markers, noting some have no sequences at
the THAPBI PICT default minimum abundance threshold. Now we discuss the pooled results.

Sample report

Please open the summary/pooled.samples.onebp.xlsx sample report, zoomed out you should have something like
this:
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The final column is the unknowns - and even at this zoom it is possible to see a solid red region for the two traditional
medicine samples (wide green background bands).
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Read report

To look at the unknown reads see summary/pooled.reads.onebp.xlsx. Sorting be the species prediction and zoom-
ing out should show something like this where the top half of the rows are those sequences with a species prediction. It
is clear that the majority of the unknown sequences are from the two traditional medicine samples (wide green bands):

Overall the replicates are reassuringly consistent - look at neighbouring rows/columns within the colour bands in the
two reports.

Pooled classifier assessment

The automated model assessment output in summary/pooled.assess.onebp.tsv is also worth review. Note this
only looks at the experimental mixtures where there is a ground truth (S1, S2, S4, S5, S6, S7, S9 and S10) - not the
traditional medicine samples where the true species content is unknown.

$ cut -f 1-5,9,11 summary/pooled.assess.onebp.tsv
<SEE TABLE BELOW>

Working at the command line or using Excel should show the following:
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#Species TP FP FN TN F1 Ad-hoc-loss
OVERALL 1058 727 240 7699 0.69 0.478
Acipenser schrenckii 0 20 0 123 0.00 1.000
Aloe reynoldsii 0 114 0 29 0.00 1.000
Aloe variegata 110 0 25 8 0.90 0.185
Anguilla anguilla 3 0 3 137 0.67 0.500
Beta vulgaris 0 0 16 127 0.00 1.000
Bos taurus 139 2 0 2 0.99 0.014
Brassica juncea 0 127 0 16 0.00 1.000
Brassica napus 7 0 9 127 0.61 0.562
Brassica nigra 0 127 0 16 0.00 1.000
Brassica oleracea 128 6 0 9 0.98 0.045
Brassicaceae (misc) 0 70 0 73 0.00 1.000
Cactaceae (misc) 0 3 0 140 0.00 1.000
Carica papaya 16 0 0 127 1.00 0.000
Crocodylus niloticus 122 0 12 9 0.95 0.090
Cullen sp. 0 16 0 127 0.00 1.000
Cycas revoluta 3 0 3 137 0.67 0.500
Dendrobium sp. 131 0 3 9 0.99 0.022
Echinocactus sp. 6 0 0 137 1.00 0.000
Euphorbia sp. 3 0 3 137 0.67 0.500
Gallus gallus 6 1 0 136 0.92 0.143
Glycine max 16 0 0 127 1.00 0.000
Gossypium hirsutum 16 0 0 127 1.00 0.000
Homo sapiens 0 2 0 141 0.00 1.000
Huso dauricus 112 0 16 15 0.93 0.125
Lactuca altaica 0 66 0 77 0.00 1.000
Lactuca sativa 74 2 0 67 0.99 0.026
Lactuca serriola 0 66 0 77 0.00 1.000
Lactuca tatarica 0 39 0 104 0.00 1.000
Lactuca virosa 0 66 0 77 0.00 1.000
Meleagris gallopavo 16 0 0 127 1.00 0.000
Parapenaeopsis sp. 0 0 6 137 0.00 1.000
Pieris brassicae 6 0 0 137 1.00 0.000
Pleuronectes platessa 64 0 0 79 1.00 0.000
Solanum lycopersicum 16 0 0 127 1.00 0.000
Sus scrofa 64 0 0 79 1.00 0.000
Triticum aestivum 0 0 16 127 0.00 1.000
Zea mays 0 0 128 15 0.00 1.000
OTHER 31 SPECIES IN DB 0 0 0 4433 0.00 0.000

Most of the false positives (FP) are alternative genus level matches in Brassica and Lactuca (as discussed in the paper).
The two sequences we recorded in the Mini-rbcL reference set as the family Brassicaceae are likely also Brassica. The
trnL-P6-loop marker had references for Aloe reynoldsii but these matches are most likely from Aloe variegata.

A couple of the unique sequences are in the Mini-rbcL reference as the family Cactaceae, and since they only appeared
in the experimental mixes, these are likely Echinocactus sp. or Euphorbia sp.

There are more interesting FP for Acipenser schrenckii (the authors found this was accidentally included from the Huso
dauricus caviar used), human (Homo sapiens, presumed laboratory contamination), and finally Lactuca sativa, cow
(Bos taurus) and chicken (Gallus gallus) which the authors traced to cross-contamination during sample preparation
or DNA isolation.

Why do Cullen sp. show up in S1 from the trnL P6 loop marker (as well as S3 which the authors found too, see their
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Table 8)?

If the sample database had been more inclusive there would have been many more false positives. For example, the
trnL-UAA sequence perfectly matching AP007232.1 Lactuca sativa is also a perfect match for MK064549.1 Luisia
teres. Similarly, the Mini-rbcL sequence perfectly matching AP012989.1 Brassica nigra and MG872827.1 Brassica
juncea also matches MN056359.2 Raphanus sativus (and more). This demonstrates the difficulties in curating an
appropriate marker database - and the content should depend in part on your target samples.

Currently the provided references sequences (and thus classification databases used) lack any markers for Beta vulgaris,
Parapenaeopsis sp., Triticum aestivum or Zea mays. Most of these were present at only a few percent dry weight, and
are likely present below the default minimum abundance threshold. This explains the false negatives.

Conclusion

It appears that the THAPBI PICT default minimum abundance threshold of 100 reads is too stringent for detecting
all the markers in a complex pool like this. Including negative sequencing controls would help set an objective lower
bound.

There also appear to be marker sequences in these control samples which have not yet been published, which would
help by filling in gaps in the reference set used for classification.

Also note we did not look at the multi-primer COI long marker, and perhaps the default onebp classifier is not appro-
priate for the Mini-rbcL marker.

• Environmental Phytophthora ITS1 - A simple example using the default primers and database. Based on a paper
from earlier in the THAPBI Phyto-Threats project:

Riddell et al. (2019) Metabarcoding reveals a high diversity of woody host-associated Phytophthora
spp. in soils at public gardens and amenity woodlands in Britain. https://doi.org/10.7717/peerj.6931

• Environmental Oomycetes ITS1 - An example where the defaults can be used, but ideally requires a different
primer pair and a custom database. Based on:

Redekar et al. (2019) Diversity of Phytophthora, Pythium, and Phytopythium species in recycled
irrigation water in a container nursery. https://doi.org/10.1094/PBIOMES-10-18-0043-R

• Drained fish ponds 12S - An example with a single marker and custom database. Based on:

Muri et al. (2020) Read counts from environmental DNA (eDNA) metabarcoding reflect fish abun-
dance and biomass in drained ponds. https://doi.org/10.3897/mbmg.4.56959

• Fungal Mock Community ITS1 & 2 - An example with multiple markers (including two sequenced together)
requiring separate primers settings and databases, based on:

Bakker (2018) A fungal mock community control for amplicon sequencing experiments. https://doi.
org/10.1111/1755-0998.12760

• Great Lakes Mock Community 16S - An example with two mitochondrial markers (sequenced separately), with
mock communities, where we focus on the minimum abundance threshold. Based on:

Klymus et al. (2017) Environmental DNA (eDNA) metabarcoding assays to detect invasive inverte-
brate species in the Great Lakes. https://doi.org/10.1371/journal.pone.0177643

• Bat Mock Community COI - A single marker example in bats, showing importance of the database content with
the default classifier. Based on:

Walker et al. (2019) A fecal sequel: Testing the limits of a genetic assay for bat species identification.
https://doi.org/10.1371/journal.pone.0224969

• Synthetic controls with fungal ITS2 - A single marker example in fungi, with mock biological communities and
synthetic control sequences. Based on:
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Palmer et al. (2018) Non-biological synthetic spike-in controls and the AMPtk software pipeline
improve mycobiome data. https://doi.org/10.7717/peerj.4925

• Soil Nematode Mock Community - Four markers (sequenced separately) in a soil nematode mock community.
Based on:

Ahmed et al. (2019) Metabarcoding of soil nematodes: the importance of taxonomic coverage and
availability of reference sequences in choosing suitable marker(s) https://doi.org/10.3897/mbmg.3.
36408

• Pest Insect Mock Communities - Three markers (sequenced together) in insect mock communities. Based on:

Batovska et al. (2021) Developing a non-destructive metabarcoding protocol for detection of pest
insects in bulk trap catches https://doi.org/10.1038/s41598-021-85855-6

• Endangered Species Mixes 16S etc - A dozen markers in animals and plants (sequenced together). Based on:

Arulandhu et al. (2017) Development and validation of a multi-locus DNA metabarcoding method
to identify endangered species in complex samples. https://doi.org/10.1093/gigascience/gix080

For each worked example there is a different sub-folder in the THAPBI PICT source code under examples/ containing
at least setup.sh to do one-off setup like downloading the public data, and run.sh to execute the main analysis
discussed. There will usually be assorted other files like reference sequences, or metadata.tsv.

Running the examples will create or use subdirectories raw_data/ for the downloaded FASTQ files, intermediate/
for per-sample working files, and summary/ for the final output reports. Where the example includes positive controls
like mock communities, the expected species content is recorded under expected/ in per-sample files.
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CHAPTER

FIVE

REFERENCE DATABASE

5.1 Introduction

THAPBI PICT has been designed as a framework which can be applied to multiple biological contexts, demonstrated
in the worked examples. Each new set of marker(s) (i.e. PCR primer targets) will require a new reference database be
compiled, most likely starting from published sequences, but we also sequenced culture collections.

Applied to environmental samples, some primer pairs will amplify a much wider sequence space than others, either
reflecting a more diverse genome region, or simply a longer sequence. Related to this, the fraction of observed sequences
with a published reference will also vary - and thus the density of the references in sequence space. This in turn will
can change which classifier algorithm is most appropriate. Inspecting the edit-graph produced for all your samples and
your initial database entries can help interpret this.

The default classifier allows perfect matches, or a single base pair difference (substitution, insertion or deletion). This
requires good database coverage with unambiguous sequences, which we have been able to achieve for the Phytophthora
ITS1 region targeted by default.

5.2 Provided database

THAPBI provides a default database which is used when the command line -d or --database setting is omitted. This
is intended for use with a Phytophthora ITS1 target region, and is used in the first worked example.

For further details see the database/README.rst file in the source code, and script database/build_ITS1_DB.sh
which automates this.

5.3 Ambiguous bases in database

Ideally all the reference sequences in your database will have unambiguous sequences only (A, C, G and T). However,
some published species sequences will contain IUPAC ambiguity codes, especially if capillary sequenced. How this is
handled will depend on the classifier algorithm used.

For example Phytophthora condilina accession KJ372262 has a single W meaning A or T. In this case for P. condilina
in our curated set, we could select the unambiguous accession MG707826 instead.

With the strictest identity classifier, the W will never be matched (since the Illumina platform does not produce any
ambiguous bases other than N). With the default onebp classifier, this can match but the W would be the single allowed
mismatch (and any database entry with more than one ambiguity would never be matched). The blast classifier uses
NCBI BLAST+ internally, and would handle the base as expected.
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5.4 Conflicting taxonomic assignments

With any amplicon marker, it is possible that distinct species will share the exact same sequence. For example, this
happens with our ITS1 marker for model organism Phytophthora infestans and sister species P. andina and P. ipomoeae.
In cases like this where the classifier finds multiple equally valid taxonomic assignments in the database, they are all
reported. Should the user wish however, their database could record a single assignment like Phytophthora infestans-
complex.

Our default primers for Phytophthora can amplify related genera, not just Peronosporales, but also some Pythiales.
Expanding the database coverage runs into two main problems. First, with less published sequences available, the
default strict classifier may fail to match many sequences to a published sequence. Second, with past renaming and
splitting of some genera, the taxonomic annotation can becomes less consistent.

The thapbi_pict conflicts subcommand can be used to report any conflicts at species or genus level.
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CHAPTER

SIX

ABUNDANCE & NEGATIVE CONTROLS

Any negative control sample is not expected to contain any of the target sequences (although it may contain spike-in
synthetic control sequences).

On a typical 96-well plate of PCR products which will go on to be multiplexed for Illumina MiSeq sequencing, most
of the samples are biological - but some should be negative controls (e.g. PCR blanks, or synthetic sequences). The
presence of biological sequence reads in the negative control samples is indicative of some kind of cross contamination.
Likewise, synthetic sequences in the biological samples are a warning sign.

The tool implements both absolute and fractional abundance thresholds, which can be specified at the command line.
Moreover, control samples can be used to automatically raise the threshold for batches of samples. Simple negative
controls can be used to set an absolute abundance threshold, but to set the fractional abundance threshold we need to
be able to distinguish expected sequences from unwanted ones. For this we require known spike-in control sequences,
which are clearly distinct from the biological markers.

6.1 Spike-in Controls

Four synthetic sequences were designed for Phyto-Threats project which funded THAPBI PICT. These were of the
typical expected ITS1 fragment length and base content, had the typical fixed 32bp header, but were otherwise shuffled
with no biological meaning (avoiding any secondary structure forming). They were synthesised using Integrated DNA
Technologies gBlocks Gene Fragments.

Our 96-well PCR plates included multiple control samples which were known ratios of these synthetic sequences, rather
than environmental DNA.

The tool needs a way to distinguish biological marker sequences (for which we wanted to make as few assumptions as
possible) from the synthetic ones (where the template sequences were known, subject only to PCR noise).

The spike-in controls are assumed to be in the database, by default under the synthetic “genus” but that is configurable.
Similar sequences in the samples are considered to be spike-ins. While the PCR noise is typically just a few base pair
changes, we also found large deletions relatively common. The matching is therefore relaxed, currently based on k-mer
content.

Conversely, the presence of the synthetic controls in any of the biological samples is also problematic. Since our
synthetic control sequences are in the default database, they can be matched by the chosen classifier, and appear in the
reports.
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6.2 Minimum Absolute Abundance Threshold

The initial absolute abundance threshold is set at the command line with -a or --abundance giving an integer value.
If your samples have dramatically different read coverage, then the fractional abundance threshold may be more appro-
priate (see below).

During the sample tally step, the -n or --negctrls argument gives the sample filenames of any negative controls to
use to potentially increase the absolute abundance threshold (see below). If you have no spike-in controls, then any
sequences in these negative controls can raise the threshold - regardless of what they may or may not match in the
reference database.

6.3 Minimum Fractional Abundance Threshold

The initial fractional abundance threshold is set at the command line with -f or --abundance-fraction to an floating
point number between zero and one, thus -f 0.001 means 0.1%. This is a percentage of the reads identified for each
marker after merging the overlapping pairs and primer matching.

During the read preparation step, the -y or --synctrls argument gives the sample filenames of any synthetic controls
to use to potentially increase the absolute abundance threshold. This setting works in conjunction with the database
which must include the spike-in sequences under the genera specified at the command lines with --synthetic (by
default “synthetic”).

6.4 Automatic thresholds

Any control samples are processed first, before the biological samples, and high read counts can raise the threshold to
that level for the other samples in that folder. This assumes if you have multiple 96-well plates, or other logical groups,
their raw FASTQ files are separated into a sub-folder per plate.

Control samples given via -n can raise the absolute abundance threshold (any synthetic spike-in reads are ignored for
this), while controls given via -y can raise the fractional abundance threshold (but must have synthetic spike-in reads
in order to give a meaningful fraction).

For example, if running with the default minimum abundance threshold of 100 (set via -a 100), and a negative con-
trol (set via -n raw_data/CTRL*.fastq.gz) contains a non-spike-in (and thus presumably biological) sequence at
abundance 136, then the threshold for the non-control samples in that folder is raised to 136.

Alternatively, you might have synthetic spike-in controls listed with -y raw_data/SPIKES*.fastq.gz and use -f
0.001 to set a default fractional abundance threshold of 0.1%. Suppose a control had 100,000 reads for a marker passing
the overlap merging and primer matching, of which 99,800 matched the spike-ins leaving 200 unwanted presumably
biological reads, of which the most abundant was at 176 copies. Then the fractional abundance threshold would be
raised slightly to 176 / 100000 = 0.00176 or 0.176%.

Note that a control sample can be used with both -n and -y, so in this second example that would also raise the absolute
abundance threshold to 176 reads.

Potentially a synthetic control sample can have unusually low read coverage, meaning even a low absolute number
of non-spike-in reads (at noise level) would give a spuriously high inferred fractional abundance threshold. To guard
against this corner case, as a heuristic half the absolute abundance threshold is applied to the synthetic control samples.
Likewise, half of any fractional abundance threshold is applied to the negative control samples, which guards against
spurious raising of the absolute threshold.

A similar problem would occur if you accidentally use -y on a sample without any expected spike-in controls. This
would suggest result in an overly high fractional threshold, treated as an error.
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SEVEN

CLASSIFIER ASSESSMENT

In assessing classification performance, it is the combination of both classification method (algorithm) and marker
database which which matters. Settings like the abundance threshold and any read correction are also important, and
the tool default settings partly reflect one of the original project goals being to avoid false positives.

To objectively assess a metabarcoding classifier we require sequenced samples of known composition, which generally
means single isolates (where a single marker sequence is typically expected), or mock communities (the bulk of our
worked examples). Carefully controlled environmental samples are possible too. We use Muri et al. (2020) as a worked
example identifying fish species where the lake was drained to collected and identify all the individual fish, but this is
problematic as the lakes were large enough that DNA from each fish could not be expected at all the sampling points,
giving an inflated false negative count.

Our tool includes an presence/absence based assessment framework based on supplying expected species lists for con-
trol samples, from which the true positive (TP), false positive (FP), true negative (TN), and false negative (FN) counts
can be computed for each species. These are the basis of standard metrics like sensitivity (recall), specificity, precision,
F-score (F-measure, or F1), and Hamming Loss. It is simple but not overly helpful to apply metrics like this to each
species, but the overall performance is more informative.

However, some scores like the Hamming Loss are fragile with regards to the TN count when comparing databases.
The Hamming Loss given by the total number of mis-predicted class entries divided by the number of class-level
predictions, thus (FP + FN) / (TP + FP + FN + TN). Consider a mock community of ten species, where the classifier
made 11 predictions which break down as 9 TP and 2 FP, meaning 10 - 9 = 1 FN. Suppose the database had a hundred
species (including all ten in the mock community), that leaves 100 - 9 - 1 - 2 = 88 TN, and a Hamming Loss of 3/100 =
0.03. Now suppose the database was extended with additional references not present in this mock community, perhaps
expanding from European Phytophthora species to include distinct entries for tropical species, or a sister group like
Peronospora. The denominator would increase, reducing the Hamming Loss, but intuitively the classifier performance
on this mock community has not changed. To address this, the classifier assessment also includes a modified ad-hoc
loss metric calculated as the total number of mis-predicted class entries divided by the number of class-level predictions
ignoring TN, or (FP + FN) / (TP + FP + FN) which in this example would give 3/12 = 0.25 regardless of the number of
species in the database. This is an intuitive measure weighting FP and FN equally (smaller is better, zero is perfect), a
potential complement to the F-score.

Note that the assessment framework only considers species level predictions, ignoring genus only predictions, and thus
will not distinguish between the default onebp classifier and variants like 1s3g.
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CHAPTER

EIGHT

COMMAND LINE

THAPBI PICT is a command line tool, meaning you must open your command line terminal window and key in
instructions to use the tool. The documentation examples use the $ (dollar sign) to indicate the prompt, followed by
text to be entered. For example, this should run the tool with no instructions:

$ thapbi_pict
...

Rather than literally printing dot dot dot, the tool should print out some terse help, listing various sub-command names,
and an example of how to get more help.

For example, -v (minus sign, lower case letter v) or --version (minus, minus, version in lower case) can be added to
find out the version of the tool installed:

$ thapbi_pict -v
THAPBI PICT v0.8.1

THAPBI PICT follows the sub-command style popularised in bioinformatics by samtools (also used in the version
control tool git). This means most of the instructions take the form thapbi_pict sub-command ..., where the
dots indicate some additional options.

The main sub-commands are to do with classifying sequence files and reporting the results, and these are described in
the first worked example:

• prepare - turn paired FASTQ input files for each sample, giving de-duplicated FASTA files

• fasta-nr and sample-tally pooling intermediate files for analysis

• classify - produce genus/species level predictions as tab-separated-variable TSV files

• summary - summarise a set of predictions by sample (with human readable report), and by unique sequence and
sample (both with Excel reports)

• edit-graph - draw the unique sequences as nodes on a graph, connected by edit-distance

• assess - compare classifier output to known positive controls

• pipeline - run all of the above in sequence

There are further sub-commands to do with making or inspecting an SQLite3 format barcode marker sequence database,
most of which are covered in the second worked example, with a custom database:

• dump - export a DB as TSV or FASTA format

• load-tax - import a copy of the NCBI taxonomy

• import - import a FASTA file, e.g. using the NCBI style naming

• conflicts - report on genus or species level conflicts in the database

141



THAPBI PICT, Release 1.0.13

And some other miscellaneous commands:

• ena-submit - write a TSV table of your paired FASTQ files for use with the ENA interactive submission system.

Start with reading the help for any command using -h or --help as follows:

$ thapbi_pict pipeline -h
...

Most of the commands have required arguments, and if you omit a required argument it will stop with an error:

$ thapbi_pict pipeline
...
thapbi_pict pipeline: error: the following arguments are required: -i/--input, -o/--
→˓output
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NINE

PYTHON API

THAPBI Phytophthora ITS1 Classifier Tool (PICT).

You would typically use THAPBI PICT via the command line tool it defines:

$ thapbi_pict --help
...

However, it is also possible to call functions etc from within Python. The top level package currently only defines the
tool version:

>>> from thapbi_pict import __version__
>>> print(__version__)

The tool documentation is hosted by Read The Docs, generated automatically from the docs/ folder of the software
repository and the “docstrings” within the source code which document the Python API.

9.1 thapbi_pict.assess module

Assess classification of marker reads at species level.

This implements the thapbi_pict assess ... command.

thapbi_pict.assess.class_list_from_tally_and_db_list(tally: dict[tuple[str, str], int], db_sp_list:
list[str])→ list[str]

Sorted list of all class names used in a confusion table dict.

thapbi_pict.assess.extract_binary_tally(class_name: str, tally: dict[tuple[str, str], int])→ tuple[int, int,
int, int]

Extract single-class TP, FP, FN, TN from multi-class confusion tally.

Reduces the mutli-class expectation/prediction to binary - did they include the class of interest, or not?

Returns a 4-tuple of values, True Positives (TP), False Positives (FP), False Negatives (FN), True Negatives (TN),
which sum to the tally total.

thapbi_pict.assess.extract_global_tally(tally: dict[tuple[str, str], int], sp_list: list[str])→ tuple[int, int,
int, int]

Process multi-label confusion matrix (tally dict) to TP, FP, FN, TN.

If the input data has no negative controls, all there will be no true negatives (TN).

Returns a 4-tuple of values, True Positives (TP), False Positives (FP), False Negatives (FN), True Negatives (TN).
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These values are analogous to the classical binary classifier approach, but are NOT the same. Even if applied to
single class expected and predicted values, results differ:

• Expect none, predict none - 1xTN

• Expect none, predict A - 1xFP

• Expect A, predict none - 1xFN

• Expect A, predict A - 1xTP

• Expect A, predict B - 1xFP (the B), 1xFN (missing A)

• Expect A, predict A&B - 1xTP (the A), 1xFP (the B)

• Expect A&B, predict A&B - 2xTP

• Expect A&B, predict A - 1xTP, 1xFN (missing B)

• Expect A&B, predict A&C - 1xTP (the A), 1xFP (the C), 1xFN (missing B)

The TP, FP, FN, TN sum will exceed the tally total. For each tally entry, rather than one of TP, FP, FN, TN being
incremented (weighted by the tally count), several can be increased.

If the input data has no negative controls, all there will be no TN.

thapbi_pict.assess.load_tsv(mapping: dict[tuple[str, str], str], classifier_file: str, min_abundance: int)→
dict[tuple[str, str], str]

Update dict mapping of (marker, MD5) to semi-colon separated species string.

thapbi_pict.assess.main(inputs, known, db_url, method, min_abundance, assess_output, map_output,
confusion_output, marker=None, ignore_prefixes=None, debug=False)

Implement the (sample/species level) thapbi_pict assess command.

The inputs argument is a list of filenames and/or folders.

Must provide: * at least one XXX.<method>.tsv file * at least one XXX.<known>.tsv file

These files can cover multiple samples as the sample-tally based classifier output, or legacy per-sample <sam-
ple>.<known>.tsv files.

thapbi_pict.assess.save_confusion_matrix(tally: dict[tuple[str, str], int], db_sp_list: list[str], sp_list:
list[str], filename: str, exp_total: int, debug: bool = False)→
None

Output a multi-class confusion matrix as a tab-separated table.

thapbi_pict.assess.save_mapping(tally: dict[tuple[str, str], int], filename: str, debug: bool = False)→ None
Output tally table of expected species to predicted sp.

thapbi_pict.assess.sp_for_sample(fasta_files: list[str], min_abundance: int, pooled_sp: dict[tuple[str, str],
str])→ str

Return semi-colon separated species string from FASTA files via dict.

thapbi_pict.assess.sp_in_tsv(classifier_files: list[str], min_abundance: int)→ str
Return semi-colon separated list of species in column 2.

Will ignore genus level predictions.

thapbi_pict.assess.tally_files(expected_file: str, predicted_file: str, min_abundance: int = 0)→
dict[tuple[str, str], set[str]]

Make dictionary tally confusion matrix of species assignments.

Rather than the values simply being an integer count, they are the set of MD5 identifiers (take the length for the
count).
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9.2 thapbi_pict.classify module

Classifying prepared marker sequences using a marker database.

This implements the thapbi_pict classify ... command.

thapbi_pict.classify.apply_method_to_seqs(method_fn: Callable, input_seqs: dict[str, str], session,
marker_name: str, min_abundance: int = 0, debug: bool =
False)→ Iterator[tuple[str, str, str, str]]

Call given method on each sequence in the dict.

Assumes any abundance filter has already been applied. Input is a dict of identifiers mapped to upper case
sequences.

thapbi_pict.classify.consoliate_and_sort_taxonomy(genus_species_taxid: Iterable[tuple[str, str, int]])
→ list[tuple[str, str, int]]

Remove any redundant entries, returns new sorted list.

Drops zero taxid entries if has matching non-zero entry.

Drops genus only entries if have species level entries. Note ignoring the TaxID here - would need to know the
parent/child relationship to confirm the genus we’re removing does have species level children in the prediction
set.

thapbi_pict.classify.main(inputs: list[str], session, marker_name: str, method: str, out_dir: str,
ignore_prefixes: tuple[str], tmp_dir: str, min_abundance: int = 0, biom=False,
debug: bool = False, cpu: int = 0)→ list[str | None]

Implement the thapbi_pict classify command.

For use in the pipeline command, returns a filename list of the TSV classifier output.

The input files should have been prepared with the same or a lower minimum abundance - this acts as an additional
filter useful if exploring the best threshold.

thapbi_pict.classify.method_blast(input_seqs: dict[str, str], session, marker_name: str, tmp_dir: str,
shared_tmp_dir: str, min_abundance: int = 0, debug: bool = False,
cpu: int = 0)→ Iterator[tuple[str, str, str, str]]

Classify using BLAST.

Another simplistic classifier, run the reads through blastn against a BLAST database of our marker sequence
database entries.

thapbi_pict.classify.method_cleanup()→ None
Free any memory and/or delete any files on disk.

Currently no need to generalise this for the different classifiers, but could if for example we also needed to delete
any files on disk.

thapbi_pict.classify.method_dist(input_seqs: dict[str, str], session, marker_name: str, tmp_dir: str,
shared_tmp_dir: str, min_abundance: int = 0, debug: bool = False, cpu:
int = 0)→ Iterator[tuple[str, str, str, str]]

Classify using edit distance.

thapbi_pict.classify.method_identity(input_seqs: dict[str, str], session, marker_name: str, tmp_dir: str,
shared_tmp_dir: str, min_abundance: int = 0, debug: bool = False,
cpu: int = 0)→ Iterator[tuple[str, str, str, str]]

Classify using perfect identity.

This is a deliberately simple approach, in part for testing purposes. It looks for a perfect identical entry in the
database.
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thapbi_pict.classify.method_substr(input_seqs: dict[str, str], session, marker_name: str, tmp_dir: str,
shared_tmp_dir: str, min_abundance: int = 0, debug: bool = False,
cpu: int = 0)→ Iterator[tuple[str, str, str, str]]

Classify using perfect identity including as a sub-string.

Like the ‘identity’ method, but allows for a database where the marker has not been trimmed, or has been imper-
fectly trimmed (e.g. primer mismatch).

thapbi_pict.classify.perfect_match_in_db(session, marker_name: str, seq: str, debug: bool = False)→
tuple[int | str, str, str]

Lookup sequence in DB, returns taxid, genus_species, note as tuple.

If the 100% matches in the DB give multiple species, then taxid and genus_species will be semi-colon separated
strings.

thapbi_pict.classify.perfect_substr_in_db(session, marker_name: str, seq: str, debug: bool = False)→
tuple[int | str, str, str]

Lookup sequence in DB, returns taxid, genus_species, note as tuple.

If the matches containing the sequence as a substring give multiple species, then taxid and genus_species will be
semi-colon separated strings.

thapbi_pict.classify.setup_blast(session, marker_name: str, shared_tmp_dir: str, debug: bool = False,
cpu: int = 0)

Prepare a BLAST DB from the marker sequence DB entries.

thapbi_pict.classify.setup_dist2(session, marker_name: str, shared_tmp_dir: str, debug: bool = False,
cpu: int = 0)→ None

Prepare a set of all DB marker sequences; set dist to 2.

thapbi_pict.classify.setup_dist3(session, marker_name: str, shared_tmp_dir: str, debug: bool = False,
cpu: int = 0)→ None

Prepare a set of all DB marker sequences; set dist to 3.

thapbi_pict.classify.setup_dist4(session, marker_name: str, shared_tmp_dir: str, debug: bool = False,
cpu: int = 0)→ None

Prepare a set of all DB marker sequences; set dist to 4.

thapbi_pict.classify.setup_dist5(session, marker_name: str, shared_tmp_dir: str, debug: bool = False,
cpu: int = 0)→ None

Prepare a set of all DB marker sequences; set dist to 5.

thapbi_pict.classify.setup_dist6(session, marker_name, shared_tmp_dir, debug=False, cpu=0)
Prepare a set of all DB marker sequences; set dist to 6.

thapbi_pict.classify.setup_dist7(session, marker_name, shared_tmp_dir, debug=False, cpu=0)
Prepare a set of all DB marker sequences; set dist to 7.

thapbi_pict.classify.setup_dist8(session, marker_name, shared_tmp_dir, debug=False, cpu=0)
Prepare a set of all DB marker sequences; set dist to 8.

thapbi_pict.classify.setup_dist9(session, marker_name, shared_tmp_dir, debug=False, cpu=0)
Prepare a set of all DB marker sequences; set dist to 9.

thapbi_pict.classify.setup_onebp(session, marker_name: str, shared_tmp_dir: str, debug: bool = False,
cpu: int = 0)→ None

Prepare a set of all the DB marker sequences; set dist to 1.
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thapbi_pict.classify.setup_seqs(session, marker_name: str, shared_tmp_dir: str, debug: bool = False, cpu:
int = 0)→ None

Prepare a set of all the DB marker sequences as upper case strings.

Also setup set of sequences in the DB, and dict of genus to NCBI taxid.

thapbi_pict.classify.taxid_and_sp_lists(taxon_entries: Iterable)→ tuple[int | str, str, str]
Return semi-colon separated summary of the taxonomy objects from DB.

Will discard genus level predictions (e.g. ‘Phytophthora’) if there is a species level prediciton within that genus
(e.g. ‘Phytophthora infestans’).

If there is a single result, returns a tuple of taxid (integer), genus-species, and debugging comment (strings).

If any of the fields has conflicting values, returns two semi-colon separated string instead (in the same order so
you can match taxid to species, sorting on the genus-species string).

thapbi_pict.classify.unique_or_separated(values: Sequence[str | int], sep: str = ';')→ str
Return sole element, or a string joining all elements using the separator.

9.3 thapbi_pict.conflicts module

Explore conflicts at species and genus level.

thapbi_pict.conflicts.main(db_url: str, output_filename: str, debug: bool = False)→ int
Implement the thapbi_pict conflicts subcommand.

Looks for taxonomy conflicts at marker, genus or species level, with the number of marker or genus level conflicts
used as the return code. i.e. Unix failure (non-zero) when there are marker or genus level conflicts.

A marker level conflict is when a unique sequence appears in the DB under more than one marker name (e.g.
both COI and ITS1), which is most likely an error in the DB construction.

Genus level conflicts are where a unique sequence in the DB is reported from more than one genus, which is
considered undesirable. Similarly for species level conflicts, but for some markers this is sadly common and not
considered to be an error.

9.4 thapbi_pict.db_import module

Shared code for THAPBI PICT to import FASTA into our database.

This code is used for importing NCBI formatted FASTA files, our curated ITS1 sequence FASTA file databases, and
other other FASTA naming conventions.

thapbi_pict.db_import.import_fasta_file(fasta_file, db_url, fasta_entry_fn, entry_taxonomy_fn, marker,
left_primer=None, right_primer=None, min_length=None,
max_length=None, name=None, trim=True, debug=True,
validate_species=False, genus_only=False, tmp_dir=None)

Import a FASTA file into the database.

thapbi_pict.db_import.load_taxonomy(session)→ set[str]
Pre-load all the species and synonym names as a set.

thapbi_pict.db_import.lookup_genus(session, name: str)
Find genus entry via taxonomy/synonym table (if present).
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thapbi_pict.db_import.lookup_species(session, name: str)
Find this species entry in the taxonomy/synonym table (if present).

thapbi_pict.db_import.main(fasta, db_url, marker, left_primer=None, right_primer=None, min_length=0,
max_length=9223372036854775807, name=None, convention='simple',
sep=None, validate_species=False, genus_only=False, ignore_prefixes=None,
tmp_dir=None, debug=False)

Import FASTA file(s) into the database.

For curated FASTA files, use convention “simple” (default here and at the command line), and specify any multi-
entry separator you are using.

For NCBI files, convention “ncbi” and for the separator use Ctrl+A (type -s $'\001' at the command line) if
appropriate, or “” or None (function default) if single entries are expected.

thapbi_pict.db_import.parse_curated_fasta_entry(text: str, known_species: list[str] | None = None)→
tuple[int, str]

Split an entry of “Accession genus species etc” into fields.

Does not use the optional known_species argument.

Returns a two-tuple of taxid (0 unless taxid=. . . entry found), genus-species.

>>> parse_curated_fasta_entry("HQ013219 Phytophthora arenaria")
(0, 'Phytophthora arenaria')

Will look for an NCBI taxid after the species name (and ignore anything following that, such as other key=value
entries):

>>> parse_curated_fasta_entry("P13660 Phytophthora aff infestans taxid=907744 etc")
(907744, 'Phytophthora aff infestans')

In this example we expect the NCBI taxid will be matched to a pre-loaded species name to be used in preference
(i.e. ‘Phytophthora aff. infestans’ with a dot in it).

thapbi_pict.db_import.parse_ncbi_fasta_entry(text: str, known_species: list[str] | None = None)→
tuple[int, str]

Split an entry of Accession Genus Species-name Description.

Returns a two-tuple: taxid (always zero), presumed genus-species (may be the empty string).

>>> parse_ncbi_fasta_entry("LC159493.1 Phytophthora drechsleri genes ...")
(0, 'Phytophthora drechsleri')
>>> parse_ncbi_fasta_entry("A57915.1 Sequence 20 from Patent EP0751227")
(0, '')
>>> parse_ncbi_fasta_entry("Y08654.1 P.cambivora ribosomal internal ...")
(0, '')

If a list of known species are used, then right most word is dropped until the text matches a known name. This
discards any description (and strain level information if the list is only to species level).

If there is no match to the provided names, heuristics are used but this defaults to the first two words.

Dividing the species name into genus, species, strain etc is not handled here.

thapbi_pict.db_import.parse_ncbi_taxid_entry(text: str, know_species: list[str] | None = None)→
tuple[int, str]

Find any NCBI taxid as a pattern in the text.
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Returns a two-tuple of taxid (zero if not found), and an empty string (use the taxonomy table in the DB to get the
genus-species).

Uses a regular expression based on taxid=<digits>, and only considers the first match:

>>> parse_ncbi_taxid_entry("HQ013219 Phytophthora arenaria [taxid=]")
(0, '')
>>> parse_ncbi_taxid_entry("HQ013219 Phytophthora arenaria [taxid=123] [taxid=456]")
(123, '')

thapbi_pict.db_import.parse_obitools_fasta_entry(text: str, known_species: list[str] | None = None)→
tuple[int, str]

Parse species from the OBITools extended FASTA header.

See https://pythonhosted.org/OBITools/attributes.html which explains that OBITools splits the FASTA line into
identifier, zero or more key=value; entries, and a free text description.

We are specifically interested in the species_name, genus_name (used if species_name is missing), and taxid.

>>> entry = "AP009202 species_name=Abalistes stellaris; taxid=392897; ..."
>>> parse_obitools_fasta_entry(entry)
(392897, 'Abalistes stellaris')

Note this will not try to parse any key=value entries embedded in the first word (which taken as the identifier).

thapbi_pict.db_import.parse_sintax_fasta_entry(text: str, known_species: list[str] | None = None)→
tuple[int, str]

Extract the species from SINTAX taxonomy annotation.

See https://drive5.com/usearch/manual/tax_annot.html which defines this taxonomy annotation convention as
used in USEARCH and VSEARCH. The tax=names field is separated from other fields in the FASTA description
line by semi-colons, for example:

>>> entry = "X80725_S000004313;tax=d:...,g:Escherichia/Shigella,s:Escherichia_coli"
>>> parse_sintax_fasta_entry(entry)
(0, 'Escherichia coli')

If there is no species entry (prefix s:) then the genus is returned (prefix g:), else the empty string:

>>> parse_sintax_fasta_entry("AB008314;tax=d:...,g:Streptococcus;")
(0, 'Streptococcus')

If the species entry is missing the genus information (which may happen depending how the file was generated),
that is inferred heuristically:

>>> entry = "X80725_S000004313;tax=d:...,g:Escherichia,s:coli"
>>> parse_sintax_fasta_entry(entry)
(0, 'Escherichia coli')

This can be unclear:

>>> entry = ">X80725_S000004313;tax=d:...,g:Escherichia/Shigella,s:Escherichia_coli"
>>> parse_sintax_fasta_entry(entry)
(0, 'Escherichia coli')
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9.5 thapbi_pict.db_orm module

Object Relational Mapping for marker sequence database.

Using SQLalchemy, the Python classes defined here give us a database schema and the code to import/export the data
as Python objects.

class thapbi_pict.db_orm.Base(*args: Any, **kwargs: Any)
Bases: DeclarativeBase

Base class for SQLAlchemy ORM declarations.

See the SQLAlchemy 2.0 documentation. This is expected to be compatible with type checkers like mypy.

class thapbi_pict.db_orm.DataSource(*args: Any, **kwargs: Any)
Bases: Base

Database entry for a data source (NCBI, curated, etc).

Each accession is expected to be unique within a data source.

class thapbi_pict.db_orm.MarkerDef(*args: Any, **kwargs: Any)
Bases: Base

Database entry for a marker listing primers and amplicon length limits.

class thapbi_pict.db_orm.MarkerSeq(*args: Any, **kwargs: Any)
Bases: Base

Database entry for a single marker reference sequence.

class thapbi_pict.db_orm.SeqSource(*args: Any, **kwargs: Any)
Bases: Base

Database entry for source of a marker sequence entry.

marker_definition

alias of MarkerDef

marker_seq

alias of MarkerSeq

source

alias of DataSource

taxonomy

alias of Taxonomy

class thapbi_pict.db_orm.Synonym(*args: Any, **kwargs: Any)
Bases: Base

Database entry for a synonym of a taxonomy entry.

In addition to direct synonyms, includes the names and synonyms of any child nodes of the species (e.g. variants,
strains, etc).

class thapbi_pict.db_orm.Taxonomy(*args: Any, **kwargs: Any)
Bases: Base

Database entry for a species’ taxonomy entry.
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thapbi_pict.db_orm.connect_to_db(*args, **kwargs)
Create engine and return session bound to it.

>>> Session = connect_to_db("sqlite:///:memory:", echo=True)
>>> session = Session()

9.6 thapbi_pict.denoise module

Apply UNOISE read-correction to denoise FASTA file(s).

This implements the thapbi_pict denoise ... command, which is a simplified version of the thapbi_pict
sample-tally ... command intended to be easier to use outside the THAPBI PICT pipeline.

thapbi_pict.denoise.main(inputs: str | list[str], output: str, denoise_algorithm: str, total_min_abundance: int
= 0, min_length: int = 0, max_length: int = 9223372036854775807, unoise_alpha:
float | None = None, unoise_gamma: int | None = None, gzipped: bool = False,
tmp_dir: str | None = None, debug: bool = False, cpu: int = 0)

Implement the thapbi_pict denoise command.

This is a simplified version of the thapbi_pict sample-tally command which pools one or more FASTA
input files before running the UNOISE read correction algorithm to denoise the dataset. The input sequences
should use the SWARM <prefix>_<abundance> style naming, which is used on output (taking the first loaded
name if a sequence appears more than once).

Arguments min_length and max_length are applied while loading the input FASTA file(s).

Argument total_min_abundance is applied after read correction.

Results sorted by decreasing abundance, then alphabetically by sequence.

thapbi_pict.denoise.read_correction(algorithm: str, counts: dict[str, int], unoise_alpha: float | None =
None, unoise_gamma: int | None = None, abundance_based: bool =
False, tmp_dir: str | None = None, debug: bool = False, cpu: int = 0)
→ tuple[dict[str, str], dict[str, str]]

Apply builtin UNOISE algorithm or invoke an external tool like VSEARCH.

Argument algorithm is a string, “unoise-l” for our reimplementation of the UNOISE2 algorithm, or “usearch”
or “vsearch” to invoke those tools at the command line.

Argument counts is an (unsorted) dict of sequences (for the same amplicon marker) as keys, with their total
abundance counts as values.

Returns a dict mapping input sequences to centroid sequences, and dict of any chimeras detected (empty for some
algorithms).

thapbi_pict.denoise.unoise(counts: dict[str, int], unoise_alpha: float | None = 2.0, unoise_gamma: int | None
= 4, abundance_based: bool = False, debug: bool = False)→ tuple[dict[str, str],
dict[str, str]]

Apply UNOISE2 algorithm.

Argument counts is an (unsorted) dict of sequences (for the same amplicon marker) as keys, with their total
abundance counts as values.

If not specified (i.e. set to zero or None), unoise_alpha defaults to 2.0 and unoise_gamma to 4.

Returns a dict mapping input sequences to centroid sequences, and an empty dict (no chimera detection per-
formed).
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thapbi_pict.denoise.usearch(counts: dict[str, int], unoise_alpha: float | None = None, unoise_gamma: int |
None = None, abundance_based: bool = False, tmp_dir: str | None = None,
debug: bool = False, cpu: int = 0)→ tuple[dict[str, str], dict[str, str]]

Invoke USEARCH to run its implementation of the UNOISE3 algorithm.

Assumes v10 or v11 (or later if the command line API is the same). Parses the four columns tabbed output.

Returns a dict mapping input sequences to centroid sequences, and a dict of MD5 checksums of any sequences
flagged as chimeras.

thapbi_pict.denoise.vsearch(counts: dict[str, int], unoise_alpha: float | None = None, unoise_gamma: int |
None = None, abundance_based: bool = True, tmp_dir: str | None = None,
debug: bool = False, cpu: int = 0)→ tuple[dict[str, str], dict[str, str]]

Invoke VSEARCH to run its reimplementation of the UNOISE3 algorithm.

Argument counts is an (unsorted) dict of sequences (for the same amplicon marker) as keys, with their total
abundance counts as values.

Returns a dict mapping input sequences to centroid sequences, and a dict of MD5 checksums of any sequences
flagged as chimeras.

9.7 thapbi_pict.dump module

Dumping out marker database to text files.

This implements the thapbi_pict dump ... command.

thapbi_pict.dump.main(db_url: str, output_filename: str, output_format: str, marker: str | None = None,
minimal: bool = False, genus: str = '', species: str = '', sep: str | None = None, debug:
bool = True)

Run the database dump with arguments from the command line.

thapbi_pict.dump.none_str(value, none_value: str = '')→ str
Turn value into a string, special case None to empty string.

9.8 thapbi_pict.edit_graph module

Generate edit-distance network graph from FASTA files.

This implements the thapbi_pict edit-graph ... command.

thapbi_pict.edit_graph.main(graph_output: str, graph_format: str, db_url: str, input_file: str,
min_abundance: int = 100, show_db_marker: str | None = None,
total_min_abundance: int = 0, min_samples: int = 0, max_edit_dist: int = 3,
ignore_prefixes: tuple[str, ...] | None = None, debug: bool = False)→ int

Run the edit-graph command with arguments from the command line.

This shows sequences from a database (possibly filtered with species/genus limits) and/or selected sample-tally
TSV file (optionally with classifier output, and possibly with a minimum abundance limit set here).

Computes a Levenshtein edit-distance matrix from the selected sequences, which can be exported as a matrix,
but is usually converted into a graph of unique sequences as nodes, with short edit distances as edges.

Graph node size is scaled by sample count (number of FASTA files that it appears in), and colored by assigned
species (from a classifier TSV file).
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thapbi_pict.edit_graph.write_pdf(G, handle)→ None
Render NetworkX graph to PDF using GraphViz fdp.

thapbi_pict.edit_graph.write_xgmml(G, handle, name: str = 'THAPBI PICT edit-graph')→ None
Save graph in XGMML format suitable for Cytoscape import.

9.9 thapbi_pict.ena_submit module

Code for sample submission to ENA/SRA.

This implements the thapbi_pict ena-submit ... command.

thapbi_pict.ena_submit.load_md5(file_list: list[str])→ dict[str, str]
Return a dict mapping given filenames to MD5 digests.

thapbi_pict.ena_submit.main(fastq: list[str], output: str, metadata_file: str | None = None,
metadata_encoding: str | None = None, metadata_cols: str | None = None,
metadata_fieldnames: str | None = None, metadata_index: str | None = None,
ignore_prefixes: str | None = None, library_name: str = '-', instrument_model:
str = 'Illumina MiSeq', design_description: str = '',
library_construction_protocol: str = '', insert_size: int = 250, tmp_dir: str |
None = None, debug: bool = False)

Implement the thapbi_pict ena-submit command.

thapbi_pict.ena_submit.write_table(handle, pairs: list[tuple[str, str, str]], meta: dict[str, str] | None,
library_name: str, instrument_model: str, design_description: str,
library_construction_protocol: str, insert_size: int)→ None

Write read file table for ENA upload.

9.10 thapbi_pict.fasta_nr module

Prepare a non-redundant FASTA file using MD5 naming.

This implements the thapbi_pict fasta-nr ... command, using some of the same code internally as the
thapbi_pict prepare-reads command.

thapbi_pict.fasta_nr.main(inputs: str | list[str], revcomp: str | list[str], output: str, min_abundance: int = 0,
min_length: int = 0, max_length: int = 9223372036854775807, debug: bool =
False)→ None

Implement the thapbi_pict fasta-nr command.

9.11 thapbi_pict.prepare module

Prepare raw amplicon sequencing reads (trimming, merging, etc).

This implements the thapbi_pict prepare-reads ... command.

thapbi_pict.prepare.find_fastq_pairs(filenames_or_folders: list[str], ext: tuple[str, ...] = ('.fastq',
'.fastq.gz', '.fq', '.fq.gz'), ignore_prefixes: tuple[str] | None = None,
debug: bool = False)→ list[tuple[str, str, str]]
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Interpret a list of filenames and/or foldernames.

Returns a list of tuples (stem, left filename, right filename) where stem is intended for use in logging and output
naming, and may include a directory name.

The filenames will be normalised relative to the current directory (so that we can directly compare file lists which
could have been defined inconsistently by the user).

Will ignore “-” if present in the inputs.

thapbi_pict.prepare.load_marker_defs(session, spike_genus: str = '')→ dict[str, dict[str, int | str |
list[tuple[str, str, set[str]]]]]

Load marker definitions and any spike-in sequences from the DB.

thapbi_pict.prepare.main(fastq: list[str], out_dir: str, session, flip: bool = False, min_abundance: int = 2,
min_abundance_fraction: float = 0.0, ignore_prefixes: tuple[str] | None = None,
merged_cache: str | None = None, tmp_dir: str | None = None, debug: bool = False,
cpu: int = 0)→ list[str]

Implement the thapbi_pict prepare-reads command.

For use in the pipeline command, returns a filename listing of the FASTA files created.

thapbi_pict.prepare.make_nr_fasta(input_fasta_or_fastq: str, output_fasta: str, min_abundance: int = 0,
min_len: int = 0, max_len: int = 9223372036854775807,
weighted_input: bool = False, fastq: bool = False, gzipped: bool =
False, header_dict: dict[str, str | int | None] | None = None, debug: bool
= False)→ tuple[int, int, int, int]

Trim and make non-redundant FASTA/Q file from FASTA input.

Makes a non-redundant FASTA file with the sequences named >MD5_abundance\n.

For FASTQ files all input reads are treated as abundance one (using weighted_input=True gives an error).

If FASTA input and weighted_input=True, reads must follow >identifier_abundance\n naming and the
abundance is used. Otherwise all treated as abundance one.

Makes a non-redundant FASTA file with the sequences named >MD5_abundance\n.

Returns the total number of accepted reads before de-duplication (integer), number of those unique (integer), and
the total number of those which passed the minimum abundance threshold (integer), and number of those which
are unique (integer).

thapbi_pict.prepare.marker_cut(marker_definitions, file_pairs: list[tuple[str, str, str]], out_dir: str,
merged_cache: str, tmp: str, flip: bool, min_abundance: int,
min_abundance_fraction: float, debug: bool = False, cpu: int = 0)→
list[str]

Apply primer-trimming for given markers.

thapbi_pict.prepare.merge_paired_reads(raw_R1: str, raw_R2: str, merged_fasta_gz: str, tmp: str, debug:
bool = False, cpu: int = 0)→ tuple[int, int]

Create NR FASTA file by overlap merging the paired FASTQ files.

thapbi_pict.prepare.parse_cutadapt_stdout(stdout: str)→ tuple[int, int]
Extract FASTA count before and after cutadapt.

>>> parse_cutadapt_stdout(
... "...\n"
... "Total reads processed: 5,869\n"

(continues on next page)
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(continued from previous page)

... "...\n"

... "Reads written (passing filters): 5,861 (99.9%)\n"

... "..."

... )
(5869, 5861)

thapbi_pict.prepare.parse_flash_stdout(stdout: str)→ tuple[int, int]
Extract FASTQ pair count before/after running flash.

>>> parse_flash_stdout(
... "...\n"
... "[FLASH] Read combination statistics:[FLASH] Total pairs: 6105\n"
... "[FLASH] Combined pairs: 5869\n"
... "..."
... )
(6105, 5869)

thapbi_pict.prepare.prepare_sample(fasta_name: str, trimmed_fasta: str, headers: dict[str, int | str | None],
min_len: int, max_len: int, min_abundance: int,
min_abundance_fraction: float, tmp: str, debug: bool = False, cpu: int
= 0)→ tuple[int | None, int | None, int | None, int]

Create marker-specific FASTA file for sample from paired FASTQ.

Applies abundance threshold, and min/max length.

Returns pre-threshold total read count, accepted unique sequence count, accepted total read count, and the abso-
lute abundance threshold used (higher of the given absolute threshold or the given fractional threshold).

thapbi_pict.prepare.run_cutadapt(long_in: str, out_template: str, marker_definitions: dict[str, Any], flip:
bool = False, debug: bool = False, cpu: int = 0)→ tuple[int, int]

Run cutadapt on a single file (i.e. after merging paired FASTQ).

The input and/or output files may be compressed as long as they have an appropriate suffix (e.g. gzipped with
.gz suffix).

Returns FASTA count before and after cutadapt.

thapbi_pict.prepare.run_flash(trimmed_R1: str, trimmed_R2: str, output_dir: str, output_prefix: str, debug:
bool = False, cpu: int = 0)→ tuple[int, int]

Run FLASH on a pair of trimmed FASTQ files to merge overlapping pairs.

Returns two integers, FASTQ pair count for input and output files.

thapbi_pict.prepare.save_nr_fasta(counts: dict[str, int], output_fasta: str, min_abundance: int = 0,
gzipped: bool = False, header_dict: dict[str, str | int | None] | None =
None)→ tuple[int, int]

Save a dictionary of sequences and counts as a FASTA file.

Writes a FASTA file with header lines starting # (which not all tools will accept as valid FASTA format).

The output FASTA records are named >MD5_abundance\n, which is the default style used in SWARM. This
could in future be generalised, for example >MD5;size=abundance;\n for the VSEARCH default.

Results are sorted by decreasing abundance then alphabetically by sequence.

Returns the total and number of unique sequences accepted (above any minimum abundance specified).

Use output_fasta=’-’ for standard out.
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9.12 thapbi_pict.sample_tally module

Prepare a non-redundant TSV file using MD5 naming.

This implements the thapbi_pict sample-tally ... command.

thapbi_pict.sample_tally.main(inputs: str | list[str], synthetic_controls: list[str], negative_controls: list[str],
output: str, session, marker: str | None = None, spike_genus=None,
fasta=None, min_abundance: int = 100, min_abundance_fraction: float =
0.001, total_min_abundance: int = 0, min_length: int = 0, max_length: int =
9223372036854775807, denoise_algorithm: str = '-', unoise_alpha: float |
None = None, unoise_gamma: int | None = None, gzipped: bool = False,
biom: str | None = None, tmp_dir: str | None = None, debug: bool = False,
cpu: int = 0)→ None

Implement the thapbi_pict sample-tally command.

Arguments min_length and max_length are applied while loading the input per-sample FASTA files.

Argument algorithm is a string, “-” for no read correction (denoising), “unoise-l” for our reimplementation of
the UNOISE2 algorithm, or “usearch” or “vsearch” to invoke those tools at the command line.

Arguments min_abundance and min_abundance_fraction are applied per-sample (after denoising if being used),
increased by pool if negative or synthetic controls are given respectively. Comma separated string argument
spike_genus is treated case insensitively.

9.13 thapbi_pict.summary module

Summarise classification results at sample and read level.

This implements the thapbi_pict summary ... command.

The code uses the term metadata to refer to the user-provided information about each sample (via a plain text TSV
table), and statistics for the internally tracked information about each sample like the number of raw reads in the
original FASTQ files (via header lines in the intermediate FASTA files).

thapbi_pict.summary.color_bands(meta_groups, sample_color_bands, default_fmt=None, debug: bool =
False)→ list

Return a list for formats, one for each sample.

thapbi_pict.summary.main(inputs, report_stem: str, method: str, min_abundance: int = 1, metadata_file: str |
None = None, metadata_encoding: str | None = None, metadata_cols: str | None =
None, metadata_groups: str | None = None, metadata_fieldnames: str | None =
None, metadata_index: str | None = None, require_metadata: bool = False,
show_unsequenced: bool = True, ignore_prefixes: tuple[str] | None = None, biom:
bool = False, debug: bool = False)→ int

Implement the thapbi_pict summary command.

The expectation is that the inputs represent all the samples from a meaningful group, likely from multiple se-
quencing runs (plates).

thapbi_pict.summary.read_summary(markers, marker_md5_to_seq, marker_md5_species,
marker_md5_abundance, abundance_by_samples, stem_to_meta,
meta_names, group_col, sample_stats, stats_fields, output, method,
min_abundance=1, excel=None, biom=None, debug=False)→ None

Create reads (rows) vs species (cols) report.
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The expectation is that the inputs represent all the samples from one (96 well) plate, or some other meaningful
batch.

thapbi_pict.summary.sample_summary(sample_species_counts, meta_to_stem, stem_to_meta, meta_names,
group_col, sample_stats, stats_fields, show_unsequenced, output,
excel, method, min_abundance=1, debug=False)

Create samples (rows) vs species (cols) report.

The expectation is that the inputs represent all the samples from a meaningful group, likely from multiple se-
quencing runs (plates).

9.14 thapbi_pict.taxdump module

Code for THAPBI PICT to deal with NCBI taxonomy dumps.

The code is needed initially for loading an NCBI taxdump folder (files names.dmp, nodes.dmp, merged.dmp etc) into
a marker database.

thapbi_pict.taxdump.filter_tree(tree: dict[int, int], ranks: dict[str, set[int]], ancestors: set[int])→
tuple[dict[int, int], dict[str, set[int]]]

Return a filtered version of the tree & ranks dict.

NOTE: Does NOT preserve the original dict order.

thapbi_pict.taxdump.get_ancestor(taxid: int, tree: dict[int, int], stop_nodes: set[int])→ int
Walk up tree until reach a stop node, or root.

thapbi_pict.taxdump.load_merged(merged_dmp: str, wanted: set[int] | None = None)→ dict[int, int]
Load mapping of merged taxids of interest from NCBI taxdump merged.dmp file.

thapbi_pict.taxdump.load_names(names_dmp: str, wanted: set[int] | None = None)→ tuple[dict[int, str],
dict[int, set[str]]]

Load scientific names of species from NCBI taxdump names.dmp file.

thapbi_pict.taxdump.load_nodes(nodes_dmp: str, wanted_ranks: Sequence[str] | None = None)→
tuple[dict[int, int], dict[str, set[int]]]

Load the NCBI taxdump nodes.dmp file.

Returns two dicts, the parent/child relationships, and the ranks (values are lists of taxids).

Default is all ranks, can provide a possibly empty list/set of ranks of interest.

thapbi_pict.taxdump.main(tax: str, db_url: str, ancestors: str, debug: bool = True)→ int
Load an NCBI taxdump into a database.

thapbi_pict.taxdump.not_top_species(tree: dict[int, int], ranks: dict[str, set[int]], names: dict[int, str],
synonyms: dict[int, set[str]], top_species)→ Iterator[tuple[int, str]]

Find all ‘minor’ species, takes set of species taxid to ignore.

Will map assorted sub-species (i.e. any nodes under top_species) to the parent species, e.g. varietas ‘Phy-
tophthora nicotianae var. parasitica’ NCBI:txid4791 will be mapped to species ‘Phytophthora nicotianae’
NCBI:txid4790 instead.

Will map anything else to the parent genus, although generally it will be skipped via the reject_species_name(. . . )
function, e.g.

• no-rank entry ‘unclassified Pythium’ NCBI:txid228096 would be mapped to Pythium NCBI:txid4797 -
although we’d not interested in importing any unclassified entries.
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• no-rank entry ‘environmental samples’ NCBI:txid660914 would be mapped to genus ‘Hyaloperonospora’
NCBI:txid184462 - but we skip this.

• entry ‘uncultured Hyaloperonospora’ NCBI:txid660915 would be mapped to genus ‘Hyaloperonospora’
NCBI:txid184462 - but we skip uncultured.

However, if you wanted to import this part of the tree:

• clade entry ‘Skeletonema marinoi-dohrnii complex’ NCBI:txid1171708 would be mapped to genus ‘Skele-
tonema’ NCBI:txid2842

Yields (genus taxid, node name) tuples.

thapbi_pict.taxdump.species_or_species_groups(tree: dict[int, int], ranks: dict[str, set[int]], names:
dict[int, str])→ Iterator[tuple[int, int]]

Find taxids for species or species groups.

Our “genus” list matches the NCBI rank “genus”, and includes child nodes as aliases (unless they fall on our
“species” list or reject list of “environmental samples” or “unclassified <genus>”).

However, our “species” list are either NCBI rank “species” or “species group” (in the later case child species are
taken as aliases).

Does not distinguish between “top level” species, or those under “no rank” nodes like “environmental samples”
or “unclassified Phytophthora” (taxid 211524),

Yields (species taxid, genus taxid) tuples.

9.15 thapbi_pict.utils module

Helper functions for THAPB-PICT code.

thapbi_pict.utils.abundance_filter_fasta(input_fasta: str, output_fasta: str, min_abundance: int)→
None

Apply a minimum abundance filter to a FASTA file.

thapbi_pict.utils.abundance_from_read_name(text: str, debug: bool = False)→ int
Extract abundance from SWARM style read name.

>>> abundance_from_read_name("9e8f051c64c2b9cc3b6fcb27559418ca_988")
988

If fails, will return one.

thapbi_pict.utils.abundance_values_in_fasta(fasta_file: str, gzipped: bool = False)→ tuple[int, int,
dict[str, int]]

Return unique count, total abundance, and maximum abundances by spike-in.

thapbi_pict.utils.cmd_as_string(cmd)
Express a list command as a suitably quoted string.

Intended for using in debugging or error messages.

thapbi_pict.utils.expand_IUPAC_ambiguity_codes(seq: str)
Convert to upper case and iterate over possible unabmigous interpretations.

This is a crude recursive implementation, intended for use on sequences with just a few ambiguity codes in them
- it may not scale very well!
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thapbi_pict.utils.export_sample_biom(output_file: str, seqs: dict[tuple[str, str], str], seq_meta:
dict[tuple[str, str], dict], sample_meta: dict[str, dict[str, str | int |
None]], counts: dict[tuple[str, str, str], int], gzipped: bool = True)
→ bool

Export a sequence vs samples counts BIOM table, with metadata.

Similar to the export_sample_tsv file (our TSV output), expects same arguments as loaded from one of our TSV
files via the parse_sample_tsv function.

Will save a BIOM v2 HDF5 file if possible and return True. If output fails (e.g. cannot import the biom Python
library), returns False.

thapbi_pict.utils.export_sample_tsv(output_file: str, seqs: dict[tuple[str, str], str], seq_meta:
dict[tuple[str, str], dict], sample_meta: dict[str, dict[str, str]], counts:
dict[tuple[str, str, str], int], gzipped: bool = False)→ None

Export a sequence vs sample counts TSV table, with metadata.

The TSV file ought to be readable by the parse_sample_tsv function, and is first generated in our pipeline by the
sample-tally command, and then extended by the classify command to add taxonomic sequence metadata.

If the output tabular file argument is “-”, it writes to stdout (not supported with gzipped mode).

With no sequence metadata this should be accepted as a TSV BIOM file.

thapbi_pict.utils.file_to_sample_name(filename: str)→ str
Given filename (with or without a directory name), return sample name only.

i.e. XXX.fasta, XXX.fastq.gz, XXX.method.tsv –> XXX

thapbi_pict.utils.find_paired_files(filenames_or_folders, ext1, ext2, ignore_prefixes=None,
debug=False, strict=False)

Interpret a list of filenames and/or foldernames to find pairs.

Looks for paired files named XXX.ext1 and XXX.ext2 which can be in different directories - duplicated filenames
(in different directories) are considered to be an error.

Having XXX.ext1 without XXX.ext2 is an error in strict mode, or a warning in debug mode, otherwise silently
ignored.

Having XXX.ext2 without XXX.ext1 is silently ignored.

The arguments ext1 and ext2 should include the leading dot.

thapbi_pict.utils.find_requested_files(filenames_or_folders: list[str], ext: str | tuple[str, ...] = '.fasta',
ignore_prefixes: tuple[str] | None = None, debug: bool = False)
→ list[str]

Interpret a list of filenames and/or foldernames.

The extensions argument can be a tuple.

thapbi_pict.utils.genus_species_name(genus: str, species: str)→ str
Return name, genus with species if present.

Copes with species being None (or empty string).

thapbi_pict.utils.genus_species_split(name: str)→ tuple[str, str]
Return (genus, species) splitting on first space.

If there are no spaces, returns (name, ‘’) instead.
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thapbi_pict.utils.is_spike_in(sequence: str, spikes: list[tuple[str, str, set[str]]])→ str
Return spike-in name if sequence matches, else empty string.

thapbi_pict.utils.iskeyword()

x.__contains__(y) <==> y in x.

thapbi_pict.utils.kmers(sequence: str, k: int = 31)→ set[str]
Make set of all kmers in the given sequence.

thapbi_pict.utils.load_fasta_header(fasta_file, gzipped=False)→ dict
Parse our FASTA hash-comment line header as a dict.

thapbi_pict.utils.load_metadata(metadata_file, metadata_encoding, metadata_cols,
metadata_groups=None, metadata_name_row=1, metadata_index=0,
metadata_index_sep=';', ignore_prefixes=('Undetermined',),
debug=False)

Load specified metadata as several lists.

The encoding argument can be None or “”, meaning use the default.

The columns argument should be a string like “1,3,5” - a comma separated list of columns to output. The column
numbers are assumed to be one-based as provided by the command line user.

The name row indicates which row in the table contains the names or descriptions of the metadata columns
(one-based).

The index column is assumed to contain one or more sequenced sample names separated by the character specified
(default is semi-colon). This one-to-many mapping reflecting that a single field sample could be sequenced more
than once (e.g. technical replicates). These sample names are matched against the file name stems, see function
find_metadata.

The metadata table rows are sorted based on the requested colunms.

Return values:

• Dict mapping FASTQ stems to metadata tuples

• Ordered dict mapping metadata tuples to lists of FASTQ stems

• list of the N field names

• Color grouping offset into the N values

thapbi_pict.utils.md5_hexdigest(filename: str, chunk_size: int = 1024)→ str
Return the MD5 hex-digest of the given file.

thapbi_pict.utils.md5seq(seq: str)→ str
Return MD5 32-letter hex digest of the (upper case) sequence.

>>> md5seq("ACGT")
'f1f8f4bf413b16ad135722aa4591043e'

thapbi_pict.utils.onebp_deletions(seq: str)→ set[str]
Generate all variants of sequence with 1bp deletion.

Assumes unambiguous IUPAC codes A, C, G, T only.

thapbi_pict.utils.onebp_inserts(seq: str)→ set[str]
Generate all variants of sequence with 1bp insert.

Assumes unambiguous IUPAC codes A, C, G, T only.
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thapbi_pict.utils.onebp_substitutions(seq: str)
Generate all 1bp substitutions of the sequence.

Assumes unambiguous IUPAC codes A, C, G, T only.

thapbi_pict.utils.parse_sample_tsv(tabular_file: str, min_abundance: int = 0, debug: bool = False,
force_upper: bool = True)→ tuple[dict[tuple[str, str], str],
dict[tuple[str, str], dict[str, str]], dict[str, dict[str, str]], dict[tuple[str, str,
str], int]]

Parse file of sample abundances and sequence (etc).

Optional argument min_abundance is applied to the per sequence per sample values (i.e. the matrix elements,
not the row/column totals).

Columns are: * Sequence label, <marker>/<identifier>_<abundance> * Column per sample giving the sequence
count * Sequence itself * Optional additional columns for sequence metadata (e.g. chimera flags)

Supports optional sample metadata header too as # prefixed header lines.

Returns dictionaries of: * Sequence keyed on [<marker>, <identitifer>], string * Sequence metadata keyed
[<marker>, <identitifer>], dict of key:value pairs * Sample metadata keyed on [<sample>], dict of key:value
pairs * Counts keyed on 3-tuple [<marker>, <identifier>, <sample>], integer

thapbi_pict.utils.parse_species_tsv(tabular_file, min_abundance=0, req_species_level=False,
allow_wildcard=False)→ Iterator[tuple[str | None, str, str, str]]

Parse file of species assignments/predictions by sequence.

Yields tuples of marker name (from the file header line), sequence name, taxid, and genus_species.

thapbi_pict.utils.primer_clean(primer: str)→ str
Handle non-IUPAC entries in primers, maps I for inosine to N.

>>> primer_clean("I")
'N'

Inosine is found naturally at the wobble position of tRNA, and can match any base. Structurally similar to
guanine (G), it preferentially binds cytosine (C). It sometimes used in primer design (Ben-Dov et al, 2006),
where degeneracy N would give similar results.

thapbi_pict.utils.reject_species_name(species: str)→ bool
Reject species names like ‘environmental samples’ or ‘uncultured . . . ’.

Will also reject names with “;” in them as used in the classifier and reports to combine multiple species entries.

thapbi_pict.utils.run(cmd, debug: bool = False, attempts: int = 1)→ CompletedProcess
Run a command via subprocess, abort if fails.

Returns a subprocess.CompletedProcess object, or None if all attempts fail.

thapbi_pict.utils.species_level(prediction: str)→ bool
Is this prediction at species level.

Returns True for a binomial name (at least one space), False for genus only or no prediction.

thapbi_pict.utils.split_read_name_abundance(text: str, debug: bool = False)→ tuple[str, int]
Split SWARM style read name into prefix and abundance.

>>> abundance_from_read_name("9e8f051c64c2b9cc3b6fcb27559418ca_988")
'9e8f051c64c2b9cc3b6fcb27559418ca', 988
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If fails to detect the abundance, will return the original text as the prefix with an abundance of 1.

thapbi_pict.utils.valid_marker_name(text: str)→ bool
Check the proposed string valid for use as a marker name.

Want to be able to use the string for file or directory names, and also column names etc in reports. At very least
should reject whitespace, line breaks, and slashes.

Also rejecting all digits, as might want to accept integers as argument (e.g. cluster array job mapping task
numbers to marker numbers).

Also rejecting the underscore, as may want to use it as a field separator in sequence names (e.g.
marker_md5_abundance), and full stop as may use it as a field separator in filenames.

May want to relax this later, thus defining this central function.

9.16 thapbi_pict.versions module

Helper code to get command line tool versions.

Defines various functions to check a tool is on the $PATH and if so, return the tool version as a short string (sometimes
including a date).

These functions are called from various THAPBI-PICT subcommands which call external tools to ensure a clear miss-
ing dependency message, and to log the version of the external tool used.

If the tool is not on the path, the commands all return None.

If we cannot parse the output, again the commands return None - which is likely an indication of a major version change,
meaning the tool ought to be re-evaluated for use with THAPBI-PICT.

thapbi_pict.versions.check_rapidfuzz()→ str
Check can import rapidfuzz and confirm recent enough.

thapbi_pict.versions.check_tools(names: list[str], debug: bool)→ list[str]
Verify the named tools are present, log versions if debug=True.

Argument names should be an interable of tool binary names.

If all the tools are present, returns a list of version strings.

If any tools are missing (or have a version we could not parse), aborts.

thapbi_pict.versions.version_blast(cmd: str = 'blastn')→ str | None
Return the version of the NCBI BLAST+ suite’s blastn (as a short string).

In the absence of a built in version switch like -v, this works by parsing the short help output with -h (which
does vary between the tools in the suite):

$ makeblastdb -h | grep BLAST
Application to create BLAST databases, version 2.7.1+

$ blastn -h | grep BLAST
Nucleotide-Nucleotide BLAST 2.7.1+

In the above examples, it would behave as follows:
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>>> version_blast("makeblastdb")
'2.7.1+'
>>> version_blast("blastn")
'2.7.1+'

If the command is not on the path, returns None.

thapbi_pict.versions.version_cutadapt(cmd: str = 'cutadapt')→ str | None
Return the version of cutadapt (as a short string).

Uses the output with --version:

$ cutadapt --version
1.18

It would capture this:

>>> version_cutadapt()
'1.18'

If the command is not on the path, returns None.

thapbi_pict.versions.version_flash(cmd: str = 'flash')→ str | None
Return the version of flash (as a short string).

Parses the output with -v:

$ flash -v | head -n 1
FLASH v1.2.11

It would capture the version from the first line as follows:

>>> version_flash()
'v1.2.11'

If the command is not on the path, returns None.

thapbi_pict.versions.version_graphviz_fdp(cmd: str = 'fdp')→ str | None
Return the version of the GraphViz tool fdp (as a short string).

Depends on the -V switch:

$ fdp -V
fdp - graphviz version 9.0.0 (0)

In the above example, it would behave as follows:

>>> version_graphviz_fdp()
'9.0.0'

If the command is not on the path, returns None.

thapbi_pict.versions.version_usearch(cmd: str = 'usearch')→ str | None
Return the version of usearch (as a short string).

Uses the output with --version:
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$ usearch --version
usearch v11.0.667_i86linux32

It would capture this:

>>> version_vsearch()
'v11.0.667'

If the command is not on the path, returns None.

thapbi_pict.versions.version_vsearch(cmd: str = 'vsearch')→ str | None
Return the version of vsearch (as a short string).

Uses the output with --version:

$ vsearch --version
...
vsearch v2.22.1_macos_x86_64, 8.0GB RAM, 8 cores
...

It would capture this:

>>> version_vsearch()
'v2.22.1'

If the command is not on the path, returns None.
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RELEASE HISTORY

The following table lists a consise summary of the main changes in each release. Please see https://github.com/peterjc/
thapbi-pict/releases for more detailed release notes.

Version Date Notes
v1.0.13 Pending Updated NCBI taxonomy and bulk genus-only entries in default DB.
v1.0.12 2024-03-11 Restored Python 3.8 support. More robust import of SINTAX style FASTA files.
v1.0.11 2024-03-05 Harmonize ASV naming in BIOM output, optional sample-tally BIOM output.
v1.0.10 2024-02-26 Sample report ‘Unique’ column is now the unique ASV count. Misc updates.
v1.0.9 2024-02-12 Using Python type annotations (internal code change). Python 3.9 onwards.
v1.0.8 2024-02-06 Additional curated Phytophthora in default DB including 15 novel taxa.
v1.0.7 2024-01-29 Treat Phytophthora cambivora as a synonym of Phytophthora x cambivora.
v1.0.6 2024-01-24 Added some Peronosclerospora to curated DB. Updated NCBI import.
v1.0.5 2023-11-22 Updated NCBI import, and scripted most of what was a semi-manual process.
v1.0.4 2023-11-20 Dropped unused -m / --method argument to edit-graph command.
v1.0.3 2023-09-04 Updated NCBI import and curated P. condilina entries in default DB.
v1.0.2 2023-08-18 Use sum of cutadapt and singleton values etc for pooled marker reports.
v1.0.1 2023-07-26 Fixed some rare corner-case read-corrections in unoise-l mode.
v1.0.0 2023-05-19 Minor documentation changes, linked to Cock et al. (2023) preprint.
v0.14.1 2023-03-13 Optional BIOM output using the biom-format Python library.
v0.14.0 2023-03-02 Offers UNOISE read-correction, built-in or invoking USEARCH or VSEARCH.
v0.13.6 2022-12-28 Factional abundance threshold in sample-tally was not strict enough.
v0.13.5 2022-12-21 Misc small fixes and documentation updates.
v0.13.4 2022-12-07 Support abundance thresholding in the sample-tally step. Log controls.
v0.13.3 2022-11-25 Using new sample-tally command in pipeline, not fasta-nr.
v0.13.2 2022-11-11 Sped up substr classifier, especially with larger databases.
v0.13.1 2022-09-21 Minor default DB update. Cap --cpu by available CPUs. Faster DB import.
v0.13.0 2022-09-14 Sped up distance based classifiers by better use of RapidFuzz library.
v0.12.9 2022-08-19 Updates default DB with new curated species and improved left trimming.
v0.12.8 2022-08-08 Treat NCBI taxonomy ‘equivalent name’ as a synonym. Minor DB update.
v0.12.7 2022-07-26 NCBI taxid in genus-only fallback classifier output. Minor DB update.
v0.12.6 2022-07-25 Changes to how NCBI sequences are trimmed for use in the default DB.
v0.12.5 2022-07-08 Merged/child NCBI taxid entries as synonyms. Import FASTA with taxid.
v0.12.4 2022-07-07 Updated edit-graph code to work with RapidFuzz v2.0.0 or later.
v0.12.3 2022-07-06 Updated NCBI taxonomy and bulk genus-only entries in default DB.
v0.12.2 2022-06-15 Updates to the curated entries in the default Phytophthora ITS1 DB.
v0.12.1 2022-05-18 Fix missing field regression on reports including unsequenced samples.
v0.12.0 2022-04-19 Set fractional abundance threshold via synthetic spike-ins. Cutadapt v4.0+.
v0.11.6 2022-03-09 Fix regression on reports including unsequenced samples.
v0.11.5 2022-02-18 Reporting enhancements when using spike-in (synthetic) controls.

continues on next page
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Table 1 – continued from previous page
Version Date Notes
v0.11.4 2022-02-08 Updates to default curated DB, adding several more Phytophthora species.
v0.11.3 2022-02-01 Fix dynamic k-mer threshold for synthetic spike-in control sequences.
v0.11.2 2022-01-20 Windows testing on AppVeyor, with minor Windows specific fixes.
v0.11.1 2022-01-18 Using rapidfuzz rather than python-Levenshtein.
v0.11.0 2022-01-13 Multi-marker reports, pooling predictions from each marker.
v0.10.6 2022-01-12 Fixed slow-down in v0.10.0 on large datasets with small DB.
v0.10.5 2021-12-23 Default for -f / --abundance-fraction is now 0.001, meaning 0.1%.
v0.10.4 2021-11-24 Updates to default curated DB, including newer NCBI taxonomy.
v0.10.3 2021-11-19 New -f / --abundance-fraction setting, off by default.
v0.10.2 2021-11-05 Updates to default curated DB. Small changes to NCBI taxonomy loading.
v0.10.1 2021-07-28 Fix for using SQLAlchemy v1.3 (previous release needed v1.4).
v0.10.0 2021-07-28 Rework to handle larger DB and multiple markers. Modifies DB schema.
v0.9.9 2021-07-08 Drop SWARM based classifiers. Single intermediate TSV file in pipeline.
v0.9.8 2021-06-17 Drop edit-graph in pipeline. Require full length primers in merged reads.
v0.9.7 2021-06-04 USEARCH SINTAX & OBITools FASTA conventions in import command.
v0.9.6 2021-05-21 Update default DB taxonomy, Peronosporales & Pythiales max 450bp.
v0.9.5 2021-05-10 Simplify to just one import command for pre-trimmed FASTA input.
v0.9.4 2021-05-05 Drop unused metadata fields in DB schema. Fix GML format edit graphs.
v0.9.3 2021-05-04 Drop HMM for spike-in control detection, now via DB & k-mer counting.
v0.9.2 2021-04-28 Fix obscure problem using relative versions of absolute paths.
v0.9.1 2021-04-20 Set metadata encoding. Spike-in HMM default now off.
v0.9.0 2021-04-19 Drop use of Trimmomatic, faster and slightly higher read counts.
v0.8.4 2021-04-13 Sped up re-running by delaying method setup until and if required.
v0.8.3 2021-04-13 Include abundance threshold in summary reports (if varied by sample).
v0.8.2 2021-04-13 Sample report pooling script. Fix -p in prepare-reads.
v0.8.1 2021-04-09 Drop species list embedded in intermediate TSV, assess needs DB now.
v0.8.0 2021-04-06 Revise genus/species columns in sample report. Add scripts/ folder.
v0.7.11 2021-03-30 assess now only at sample level. Abundance threshold in classify.
v0.7.10 2021-03-24 Pipeline includes fasta-nr command making non-redundant FASTA file.
v0.7.9 2021-03-15 Option to show unsequenced entries in summary sample report (-u).
v0.7.8 2021-03-11 Only import IUPAC DNA characters to DB. Fix N. valdiviana in default DB.
v0.7.7 2021-02-24 Revise default ITS1 DB: NCBI Oomycetes, more curation & single isolates.
v0.7.6 2021-02-17 curated-seq replaces seq-import, used when building default DB.
v0.7.5 2021-02-16 Refine default DB by adjusting how genus-level NCBI import trimmed.
v0.7.4 2021-02-15 Edit-graph genus-only labels. New 1s2g, 1s4g & 1s5g classifiers.
v0.7.3 2021-01-29 Update NCBI import, taxonomy. New 1s3g classifier. Use cutadapt v3.0+.
v0.7.2 2020-10-06 New ena-submit command for use with interactive ENA read submission.
v0.7.1 2020-09-29 Curated Phytophthora DB minor updates. Classifier output in edit-graph.
v0.7.0 2020-04-02 Read counts etc as a header in intermediate FASTA files; shown in reports.
v0.6.15 2020-03-12 Fix regression in read report column sorting.
v0.6.14 2020-03-12 Merge read-summary & sample-summary into new summary command.
v0.6.13 2020-03-09 New classifier method substr for poorly trimmed DB content.
v0.6.12 2020-03-09 New advanced setting --merged-cache intended for multiple marker use.
v0.6.11 2020-03-02 Update genus-level only NCBI import, restrict to those with 32bp leader.
v0.6.10 2020-02-24 Treat I (for inosine as in tRNA) in primers as N (IUPAC code for any base).
v0.6.9 2020-02-20 Allow pre-primer-trimmed FASTQ. Fix row coloring when missing samples.
v0.6.8 2020-02-17 Metadata -x default now column 1. Fix read report metadata captions.
v0.6.7 2020-02-13 Method in pipeline filenames; max sample abundance in read reports.
v0.6.6 2020-02-05 Coloring groups in sample-report. Can call assessment from pipeline.
v0.6.5 2020-01-27 Do --flip in prepare-reads using cutadapt v2.8 or later.

continues on next page
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Table 1 – continued from previous page
Version Date Notes
v0.6.4 2020-01-23 curated-import accepts primers. Reduce memory usage for onebp.
v0.6.3 2020-01-20 Treat NCBI taxonomy “includes” as synonyms, 396 new species aliases.
v0.6.2 2020-01-14 Memory optimisation to the default onebp classifier.
v0.6.1 2020-01-08 Requires at least Python 3.6 as now using f-strings (internal change only).
v0.6.0 2020-01-08 Stop discarding normally conserved Phytophthora ITS1 marker 32bp start.
v0.5.8 2019-12-11 Correction to start of a P. parsiana curated sequence in our DB.
v0.5.7 2019-12-09 Replace min bit score with min percentage coverage in blast classifier.
v0.5.6 2019-12-04 Import species under “unclassified Phytophthora” as genus Phytophthora.
v0.5.5 2019-12-03 Update NCBI taxonomy, adds Phytophthora caryae and P. pseudopolonica.
v0.5.4 2019-12-02 Only use HMM to detect synthetic read negative controls.
v0.5.3 2019-11-25 Replace HMM filter on importing to the database with length check only.
v0.5.2 2019-11-25 Remove redundant use of HMM filter in seq-import command.
v0.5.1 2019-11-22 Update NCBI taxonomy, adds Phytophthora oreophila and P. cacuminis.
v0.5.0 2019-11-21 Only use HMM as a filter, not for trimming in DB import or classify steps.
v0.4.19 2019-11-19 Additional curated entries in default ITS1 database.
v0.4.18 2019-11-19 Rework sample-summary table output, now samples vs species with Excel.
v0.4.17 2019-11-15 Control based minimum abundance threshold applied at folders level.
v0.4.16 2019-11-15 Bug fix in fasta-nr when using input records with descriptions.
v0.4.15 2019-11-04 Harmonise dump FASTA & curated-import with semi-colon separator.
v0.4.14 2019-10-23 Configurable FASTA entry separator for curated-import & ncbi-import.
v0.4.13 2019-10-22 Fix 5 cases missing A near end, ...CTGAAAACT to ...CTGAAAAACT.
v0.4.12 2019-10-22 Remove now unused legacy-import and database/legacy/ files.
v0.4.11 2019-10-21 Update curated DB entries, focused on truncated sequences.
v0.4.10 2019-10-21 New curated-import command, rework handling of curated DB entries.
v0.4.9 2019-10-17 New sample-summary switch -q / --requiremeta. NetworkX v2.4 fix.
v0.4.8 2019-10-11 New fasta-nr command for use in alternatives to prepare-reads.
v0.4.7 2019-10-10 New --minlen & --maxlen args for prepare-reads and pipeline.
v0.4.6 2019-10-02 Forgot to include updated DB with the PyPI release.
v0.4.5 2019-10-02 Apply primer trimming to ncbi-import (crop if primers found).
v0.4.4 2019-10-02 New --hmm & --flip arguments for prepare-reads and pipeline.
v0.4.3 2019-09-26 New conflicts command reports genus/species level conflicts in DB.
v0.4.2 2019-09-26 Drop clade from taxonomy table, require unique species entries.
v0.4.1 2019-09-16 Include NCBI strains/variants/etc & their synonyms as species synonyms.
v0.4.0 2019-09-12 NCBI taxonomy synonym support; Oomycetes default taxonomy import.
v0.3.12 2019-09-12 New dump option -m / --minimal for DB comparison.
v0.3.11 2019-09-09 Update default DB and tests to use September 2019 NCBI taxonomy.
v0.3.10 2019-09-05 Handle missing or empty input FASTQ files more gracefully.
v0.3.9 2019-08-14 Log BLAST bit score, merge assess warnings, 3dp for ad-hoc loss.
v0.3.8 2019-08-09 The blast classifier now applies a minimum BLAST bit score of 100.
v0.3.7 2019-08-05 Add Python API to the main documentation.
v0.3.6 2019-07-19 Add Zenodo FASTQ link to worked example and use assess command.
v0.3.5 2019-07-12 Add missing T or CT to 11 of the legacy ITS1 sequences in the DB.
v0.3.4 2019-07-08 Worked example using woody hosts dataset from Riddell et al. (2019).
v0.3.3 2019-07-04 Fix regression in group coloring for read-summary Excel output.
v0.3.2 2019-07-04 Read The Docs; use -i / --input consistently - no positional args.
v0.3.1 2019-06-27 Reformat documentation to use reStructuredText rather than Markdown.
v0.3.0 2019-06-26 Include four gBlocks synthetic negative controls in DB and pipeline.
v0.2.6 2019-06-25 Phytophthora ITS1 HMM threshold set within model file, not in code.
v0.2.5 2019-06-21 Include XGMML edit-graph (for Cytoscape use) in pipeline output.
v0.2.4 2019-06-21 Fix 3 Hyaloperonospora also in Peronospora in default DB.

continues on next page
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Table 1 – continued from previous page
Version Date Notes
v0.2.3 2019-06-18 Sample count rather than total read abundance for edit-graph node size.
v0.2.2 2019-06-12 New edit-graph command. Use Cytoscape etc, or PDF via GraphViz.
v0.2.1 2019-05-27 Cope better with multiple (short) ITS1 fragments during classification.
v0.2.0 2019-05-14 Limit ITS1 length, 100-250bp. Exclude uncultured NCBI entries from DB.
v0.1.12 2019-05-09 Sort read-summary by species. Set coloring group at command line.
v0.1.11 2019-05-06 Excel output from read-summary with formatting applied.
v0.1.10 2019-05-03 Tweak command line API, renamed plate-summary to read-summary.
v0.1.9 2019-05-02 New pipeline subcommand (prepare reads, classify, and report).
v0.1.8 2019-05-01 Standard errors for missing external tools. Log versions in verbose mode.
v0.1.7 2019-05-01 Chang default classifier method from identity to more fuzzy onebp.
v0.1.6 2019-04-30 Include ready to use binary ITS1 DB in source tar-ball & wheel files.
v0.1.5 2019-04-29 Rework optional metadata integration and its display in summary reports.
v0.1.4 2019-04-25 Sort samples using the optional metadata fields requested in reports.
v0.1.3 2019-04-24 Can optionally display sample metadata from TSV file in summary reports.
v0.1.2 2019-04-17 Keep searching if onebp classifier perfect match is at genus-level only.
v0.1.1 2019-04-16 Expand default taxonomy & DB from Peronosporaceae to Peronosporales.
v0.1.0 2019-04-04 Include a bundled ITS1 DB.
v0.0.15 2019-04-03 Support for genus-level only entries in the DB.
v0.0.14 2019-04-01 MD5 in dump output. Fix importing sequences failing taxonomic validation.
v0.0.13 2019-03-22 Drop conserved 32bp when primer trim. Assess at sample level by default.
v0.0.12 2019-03-11 Fix bug in swarmid classifier.
v0.0.11 2019-03-08 Sped up FASTQ preparation by using flash instead of pear v0.9.6.
v0.0.10 2019-03-06 Replace primer code allowing only 1bp differences with cutadapt.
v0.0.9 2019-03-05 Look for expected primers, discards mismatches. Cache HMM files locally.
v0.0.8 2019-02-21 Fix multi-class TN under-counting. New loss metric, swarmid classifier.
v0.0.7 2019-02-12 New plate-summary command, onebp classifier.
v0.0.6 2019-02-07 Misc. cleanup and import fixes.
v0.0.5 2019-02-06 Hamming Loss in assessment output.
v0.0.4 2019-01-24 New seq-import command, blast classifier, multi-taxon predictions.
v0.0.3 2019-01-22 Simplify generated filenames.
v0.0.2 2019-01-21 New assess command.
v0.0.1 2019-01-17 Initial framework with identity and swarm classifiers.
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CHAPTER

ELEVEN

DEVELOPMENT NOTES

11.1 Python style conventions

The Python code follows PEP8 and PEP257 docstring style, with black formatting, and is guided by the Zen of Python.

Practically, coding style is enforced with several command line tools including ruff , flake8 (with plugins), and shfmt
(for the formatting bash scripts), run via the tool pre-commit.

You can install these tools using:

$ pip install pre-commit
$ pre-commit install # within the thapbi_pict main directory

The checks will then run automatically when you make a git commit. You can also run the checks directly using:

$ pre-commit run -a

If your editor can be configured to run flake8 and/or ruff automatically, even better. These checks are done as part of
the continuous integration when changes are made on GitHub.

11.2 Continuous Integration

Currently this is setup to do automated testing under Linux using free continuous integration services:

• CircleCI (Linux): https://circleci.com/gh/peterjc/thapbi-pict/tree/master

• AppVeyor (Windows): https://ci.appveyor.com/project/peterjc/thapbi-pict/history

11.3 Dependencies

See the main installation instructions for end users. For development we need Python, a bash shell, git, and various
other command line dependencies. Installing THAPBI PICT from source (see below), will fetch Python dependencies.

The two requirements files (requirements.txt for Python dependencies, and requirements-ext.txt for external
command line bioinformatics tools) are used in the continuous integration testing. These files can contain exact pinned
dependency versions, allowing us to define a more reproducible environment for running this software if needed.

On Linux or macOS, you should have the bash shell and standard Unix tools like grep already installed. We recommend
installing our specific command line tool dependencies with Conda packaging system, via the BioConda channel:
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$ conda install --file requirements-ext.txt

On Windows, few of the dependencies are available via Conda. The Git For Windows installer will provide git, bash,
grep, etc. You will also need to manually install sqlite3, flash, and NCBI BLAST.

11.4 Installing from source

First, download the code from GitHub and decompress it if required. The best way to do this if you are likely to
contribute any changes is at the command line with git.

$ git clone https://github.com/peterjc/thapbi-pict.git
$ cd thapbi-pict

Then build the default reference database, by loading the provided FASTA files into SQLite3, see database/README.
rst for more information on this. Make it read only to prevent accidental edits:

$ cd database
$ ./build_ITS1_DB.sh
$ cd ..
$ cp database/ITS1_DB.sqlite thapbi_pict/ITS1_DB.sqlite
$ chmod a-w thapbi_pict/ITS1_DB.sqlite

Assuming your default Python is at least version 3.7, to install the tool and automatically get our Python dependencies:

$ pip install .

If your system defaults to Python 2, try pip3 install . or python3 -m pip install . instead.

Once installed, you should be able to run the tool using:

$ thapbi_pict

This should automatically find the installed copy of the Python code. Use thapbi_pict -v to report the version, or
thapbi_pict -h for help.

11.5 Release process

For a release, start from a clean git checkout (to reduce the chance of bundling any stray local files despite a cautious
MANIFEST.in). You will need some python tools:

$ pip install -U pip twine build

First confirm if the DB at thapbi_pict/ITS1_DB.sqlite is up to date:

sqlite3 thapbi_pict/ITS1_DB.sqlite .dump | grep -i "Imported with" | head -n 1

If there have been changes requiring the DB be rebuilt, do this:

cd database
./build_ITS1_DB.sh
git commit ITS1_DB.fasta -m "Rebuilt DB"
cd ..
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Next confirm the CHANGELOG.rst file is up to date, including using today’s date for the new version. Then actually do
the build:

rm -rf build/
python -m build
git tag vX.Y.Z
git push origin master --tags
twine upload dist/thapbi_pict-X.Y.Z*

The PyPI upload should trigger an automated pull request updating the THAPBI PICT BioConda recipe which will
need reviewing (e.g. new dependencies) before it is merged.

Must also turn the git tag into a “release” on GitHub, and attach the wheel to it. This will generate a version specific
DOI on Zenodo. https://github.com/peterjc/thapbi-pict/releases

This documentation was generated for THAPBI PICT version 1.0.13.
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thapbi_pict, 143
thapbi_pict.assess, 143
thapbi_pict.classify, 145
thapbi_pict.conflicts, 147
thapbi_pict.db_import, 147
thapbi_pict.db_orm, 150
thapbi_pict.denoise, 151
thapbi_pict.dump, 152
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D
DataSource (class in thapbi_pict.db_orm), 150
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F
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lookup_species() (in module thapbi_pict.db_import),
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M
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main() (in module thapbi_pict.conflicts), 147
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