

    
      
          
            
  
THAPBI Phytophthora ITS1 Classifier Tool (PICT)

THAPBI PICT is a sequence based diagnostic/profiling tool from the UK funded
Tree Health and Plant Biosecurity Initiative (THAPBI) Phyto-Threats project [https://www.forestresearch.gov.uk/research/global-threats-from-phytophthora-spp/],
initially focused on identifying Phytophthora species present in Illumina
sequenced environmental samples.

Phytophthora (from Greek meaning plant-destroyer) species are economically
important plant pathogens, in both agriculture and forestry. ITS1 is short for
Internal Transcribed Spacer one, which is a region of eukaryotes genomes
between the 18S and 5.8S rRNA genes. This is commonly used for molecular
barcoding, where sequencing this short region can identify species.

With appropriate primer settings and a custom database of full length markers,
THAPBI PICT can be applied to other organisms and/or barcode marker sequences
- not just Phytophthora ITS1. It requires overlapping paired-end Illumina
reads which can be merged to cover the full amplicon marker. Longer markers
or fragmented amplicons are not supported. Internally it works by tracking
unique amplicon sequence variants (ASVs), using MD5 checksums as identifiers.

The worked examples include oomycetes, fungi, fish, bats, and plants, and
cover markers in ITS1, ITS2, 12S, 16S, COI, and more. The main criteria has
been mock communities with known species composition.

The THAPBI Phyto-Threats project was initially supported by a grant funded
jointly by the Biotechnology and Biological Sciences Research Council (BBSRC [https://bbsrc.ukri.org/]), the Department for Environment, Food and Rural
affairs (DEFRA [https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs]),
the Economic and Social Research Council (ESRC [https://esrc.ukri.org]),
the Forestry Commission [https://www.gov.uk/government/organisations/forestry-commission],
the Natural Environment Research Council (NERC [https://nerc.ukri.org])
and the Scottish Government [https://www.gov.scot/], under the Tree
Health and Plant Biosecurity Initiative (THAPBI).

Key links:


	Documentation on Read The Docs: https://thapbi-pict.readthedocs.io/


	Source code repository on GitHub: https://github.com/peterjc/thapbi-pict/


	Software released on PyPI: https://pypi.org/project/thapbi-pict/


	Zenodo DOI for software: https://doi.org/10.5281/zenodo.4529395


	Paper on PeerJ: https://doi.org/10.7717/peerj.15648





Documentation contents:


	Introduction

	Installation

	Quick Start

	Worked Examples

	Reference database

	Abundance & Negative Controls

	Classifier Assessment

	Command Line

	Python API

	Release History

	Development Notes





This documentation was generated for THAPBI PICT version 1.0.12.




            

          

      

      

    

  

    
      
          
            
  
Introduction

THAPBI PICT is a tool designed to assess species content of metabarcode
amplicons sequenced using an overlapping paired-end Illumina protocol.
The input data is paired FASTQ files (one pair for each sample), from which
unique sequences (commonly called unique amplicon sequence variants, ASVs)
and their abundance are reported alongside one or more matching species or
genus names.

[image: Flowchart summarising THAPBI PICT pipeline, from raw paired FASTQ files to reports.]In this illustrative flow chart of the default pipeline, the input paired
FASTQ files are green, the intermediate per-sample FASTA and TSV files are
yellow, and the output reports are in orange. The individual steps of the
pipeline are dark blue boxes.


Read preparation

The first stage of the pipeline goes from a set of paired FASTQ files to a
set of non-redundant primer trimmed FASTA files and sample tallies per marker.
This currently runs as follows:


	Merge overlappping reads into single sequences, using
Flash [https://ccb.jhu.edu/software/FLASH/]
(Magoc and Salzberg 2011 [https://doi.org/10.1093/bioinformatics/btr507]).


	Filter for primers and trim to target region, using
Cutadapt [https://github.com/marcelm/cutadapt]
(Martin 2011 [https://doi.org/10.14806/ej.17.1.200]).


	Tally unique sequences per sample per marker.


	Optionally apply UNOISE read correction (de-noising).


	Apply a minimum abundance threshold (guided by any negative controls).






Sequence classification

The second stage of the pipeline offers a choice of classifier algorithms:


	100% identity (identity). Requires the primer trimmed read sequence
match a database entry exactly. The database entries must be trimmed too.


	Up to one base pair away (onebp, the default). Like the identity
classifier, but allows a single base pair edit (a substitution, deletion,
or insertion).


	Up to one base pair away for a species level match (like the default
onebp method), but falling back on up to 2bp, 3bp, 4bp, … away for a
genus level match (1s2g, 1s3g, 1s4g, …).


	Perfect substring (substr). Like the identity classifier, but also
allows for the query sequence to be a perfect substring of a database entry.
Useful if the database entries have not all been trimmed exactly.


	Top BLAST hit within database (blast). This classifier calls NCBI BLAST
with a local database built of the database sequences, and takes the species
of the top BLAST hit(s) subject to some minimum alignment quality to try to
exclude misleading matches.




These have different strengths and weaknesses, which depend in part on the
completeness of the database for the target environment. The identity,
substr and onebp classifiers are very strict, and with a sparse
database could leave a lot a lot of sequences with no prediction. On the other
hand, the blast classifier is much more fuzzy and will make
classifications on much looser criteria - but with a sparse database those
matches could easily be false positives.

In assessing the classification performance, it is the combination of both
classification method (algorithm) and marker database which which matters.



Classification output

The classifier output is at unique sequence level, reporting zero or more
species matches (or genus matches from some classifiers, or if sequences in
the database are recorded at genus level only).

For example, an ITS1 sequence from a known Phytophthora infestans single
isolate control can in addition to this expected result also perfectly match
sister species P. andina and P. ipomoeae. Here the classifier would report
all three species (sorted alphabetically), giving:

Phytophthora andina;Phytophthora infestans;Phytophthora ipomoeae





If additionally the query sequence matched genus level only Phytophthora
entries in the database, that would be redundant information, and not reported
in this example.

Neither in this raw classification output, nor the provided reports, does
THAPBI PICT currently attempt any simiplification like last reporting the
common ancestor of a complex result. For the initial use case focused on
Phytophthora, this is simply not needed.



Reporting

There are currently three main reports produced (in multiple formats including
formatted Excel spreadsheets).


	Sample report. Table with samples as rows, and genus and species as
columns, with combined sequence counts as values. Includes a total row, and
unclassified counts as additional column. Can include sample metadata as
additional columns.


	Read report. Table of unique sequences as rows, and samples as columns,
with read counts (sequence abundance) as values. Includes any species
classification and the sequences themselves as additional columns. Can
include sample metadata as additional header rows.


	Edit graph. Represents all the unique sequences in the sample (plus
optionally all those in the reference database) as nodes with edges between
them for edit distance (solid black lines for 1bp, dashed grey for 2bp, and
dotted grey for 3bp away). Any sequences also in the database are colored.




These are discussed and excerpts shown in the worked examples later in the documentation.





            

          

      

      

    

  

    
      
          
            
  
Installation


First time installation

We recommend installing this tool on Linux or macOS using the Conda [https://conda.io/] packaging system, via the BioConda [https://bioconda.github.io/] channel, which will handle
all the dependencies:

$ conda install thapbi-pict





Alternatively, since the software is on the Python Package Index (PyPI) [https://pypi.python.org/], the following command will install it along
with its Python dependencies:

$ pip install thapbi-pict





However, in this case you will still need to install at least the command line
tool flash (for merging Illumina paired reads), and optionally others like
NCBI BLAST+ (used for one classifier method). If you have BioConda setup, use
the following:

$ conda install --file requirements-ext.txt





If you are not using Conda,  then on a typical Linux system most of the tools
required will be available via the default distribution packages, although not
always under the same package name.

On Debian (with the efforts of DebianMed), or Ubuntu Linux, try:

$ sudo apt-get install ncbi-blast+





If you are on Windows, and do not wish to or cannot use the Windows Subsystem
for Linux (WSL), the tool can be installed with pip, but you will have to
manually install the command line dependencies. Download a pre-compiled binary
from https://ccb.jhu.edu/software/FLASH/ and BLAST+ (if required) from the
NCBI, and ensure they are on the system PATH. To run the test suite and worked
example scripts, you will also need a bash shell with basic Unix tools like
grep.

If you want to install the very latest unreleased code, you must download the
source code from the repository on GitHub [https://github.com/peterjc/thapbi-pict] - see the CONTRIBUTING.rst file
for more details.

Once installed, you should be able to run the tool using:

$ thapbi_pict





This should automatically find the installed copy of the Python code. Use
thapbi_pict -v to report the version, or thapbi_pict -h for help.



Updating

If you installed via conda, this should work:

$ conda update thapbi-pict





If you installed via pip, this should work:

$ pip install --upgrade thapbi-pict





Either way, you can check the installed tool version using:

$ thapbi_pict -v









            

          

      

      

    

  

    
      
          
            
  
Quick Start

Here we describe a simplified use of the THAPBI PICT tool to assess a single
Illumina MiSeq sequencing run. The input data is a set of paired FASTQ files
(one pair for each sample), perhaps barcoded samples from a 96-well plate.

[image: Flowchart summarising THAPBI PICT pipeline, from raw paired FASTQ files to reports.]In this illustrative flow chart of the default pipeline, the input paired
FASTQ files are green, the intermediate per-sample FASTA and TSV files are
yellow, and the output reports are in orange. The individual steps of the
pipeline are dark blue boxes.

We will now describe how to run the thapbi_pict pipeline command, which
will process the samples, make classifications, and summary reports.

$ thapbi_pict pipeline -h
...






Setup

We assume you have a new folder dedicated to this analysis, with a sub folder
raw_data/ which contains the demultiplexed paired FASTQ files which are
named like <sample_name>_R1.fastq.gz and <sample_name>_R2.fastq.gz
as provided by your sequencing centre. The tool understands a few widely used
naming patterns. We recommend that you do not decompress the FASTQ files
(as <sample_name>_R1.fastq and <sample_name>_R2.fastq), leaving them
gzip compressed is preferable for disk space.

$ cd /path/to/my/project/
$ ls raw_data/*.fastq.gz
...





We will make two additional sub-folders, intermediate/ (for the per-sample
prepared FASTA files), and summary/ for the folder level reports.

$ mkdir -p intermediate/ summary/







Running

With that done, we run the thapbi_pict pipeline command, which for a
single 96 sample Illumina MiSeq run should take a minute or so:

$ thapbi_pict pipeline -i raw_data/ -s intermediate/ -o summary/thapbi-pict
...
Wrote summary/thapbi-pict.ITS1.samples.onebp.*
Wrote summary/thapbi-pict.ITS1.reads.onebp.*
All done!





This is robust to being interrupted and restarted (as long as you are not
changing settings), and will reuse intermediate files:

$ thapbi_pict pipeline  -i raw_data/ -s intermediate/ -o summary/thapbi-pict
...
Skipped 120 previously prepared ITS1 samples
...
Wrote summary/thapbi-pict.ITS1.samples.onebp.*
Wrote summary/thapbi-pict.ITS1.reads.onebp.*
All done!





All being well, this will produce a set of report files, with names starting
with the prefix summary/thapbi-pict.* given as follows:

$ ls -1 summary/thapbi-pict.*
summary/thapbi-pict.ITS1.onebp.tsv
summary/thapbi-pict.ITS1.reads.onebp.tsv
summary/thapbi-pict.ITS1.reads.onebp.xlsx
summary/thapbi-pict.ITS1.samples.onebp.tsv
summary/thapbi-pict.ITS1.samples.onebp.xlsx
summary/thapbi-pict.ITS1.tally.tsv






Warning

This minimal example omits a key consideration - telling the tool which
samples are negative controls, and/or manually setting the minimum read
abundance.





Intermediate FASTA files

The first stage of the pipeline can be run separately as the
thapbi_pict prepare command. Here each pair of FASTQ files named something
like <sample_name>_R1.fastq.gz and <sample_name>_R2.fastq.gz is
processed to give a much smaller FASTA format files
<marker_name>/<sample_name>.fasta for each marker, containing all the
unique sequences from that sample which have the expected primers (so here
should resemble an ITS1 sequence or our synthetic controls).

In these FASTA files, each sequence is named as <checksum>_<abundance>
where the MD5 checksum [https://en.wikipedia.org/wiki/MD5] of the
sequence and is used as a unique shorthand - a 32 character string of the
digits 0 to 9 and lower cases letters a to f inclusive.
These MD5 checksums are used later in the pipeline, including in the read
reports.

The intermediate FASTA files start with a header made of multiple lines
starting with #, which records information about the sample for use in
reporting. This includes which marker this was and the primers, how many raw
reads the FASTQ files had, how many were left after pair merging, and primer
trimming. Many third-party tools will accept these files as FASTA without
complaint, but some tools require the header be removed.

The second stage of the pipeline can be run separately as the thapbi_pict
sample-tally command. This produces a sequence versus sample tally table as
a tab-separated table (TSV file), with the sequences as the final column. This
is file summary/thapbi-pict.ITS1.tally.tsv in the above example.

This step can optionally produce a pooled non-redundant FASTA file with all
the observed marker sequences in it (and the total read abundance).



Intermediate TSV files

The third stage of the pipeline can be run separately as the thapbi_pict
classify command. Here species predictions are made for each sequence in the
prepared sequence vs sample tally file, generating a TSV file where the first
column is the sequence name in <checksum>_<abundance> format. This is file
summary/thapbi-pict.ITS1.onebp.tsv in the above example.



Sample Reports

The first set of reports from the pipeline or thapbi_pict summary command
are the sample reports - using the filenames from the above example:


	Plain table summary/thapbi-pict.ITS1.samples.onebp.tsv (tab separated
variables, TSV) which can be opened in R, Excel, or similar.


	Visually formatted table summary/thapbi-pict.ITS1.samples.onebp.xlsx
(Microsoft Excel format), with the same content but with colors etc applied.




These aim to give a summary of the species identified within each sample.
The tables have one row for each sample. The main columns give total read
counts, those not matched to anything (“Unknown”), reads matched at species
level (with ambiguous combinations listed explicitly), and reads matched only
to genus level.

In the Excel version, conditional formatting is used to highlight the non-zero
counts with a red background.



Read Reports

The other report from the pipeline or thapbi_pict summary command is more
detailed, being at the level of the unique sequences or reads. Again using the
filenames from the above example:


	Plain table summary/thapbi-pict.ITS1.reads.onebp.tsv (tab separated
variables, TSV) which can be opened in R, Excel, or similar.


	Visually formatted table summary/thapbi-pict.ITS1.reads.onebp.xlsx
(Microsoft Excel format), with the same content but with colors etc applied.




This read report has a row for each unique sequence. The first columns are the
unique sequence MD5 checksum, any species prediction, the sequence itself, the
number of samples it was detected in above the threshold, and the total number
of times this was seen (in samples where it was above the threshold). Then the
main columns (one per sample) list the abundance of each unique sequence in
that sample (if above the threshold).

In the Excel version, conditional formatting is used to highlight the non-zero
counts with a red background.



Edit Graph

While not run by the pipeline, there is a separate thapbi_pict edit-graph
command, where the default output is:


	Edit-distance graph XXX.edit-graph.xgmml (XGMML, eXtensible
Graph Markup and Modeling Language) which we recommend opening in Cytoscape [https://cytoscape.org/].




Note that thapbi_pict edit-graph supports other node-and-edge graph file
formats, and can produce a static PDF image as well using GraphViz [http://graphviz.org/] and other dependencies, or a distance matrix.



Next Steps

This minimal example omits a key consideration which is telling the tool which
of the samples are your negative controls and/or manually setting the minimum
read abundance.

Also, interpreting the main reports is much easier if you can provide suitably
formatted metadata. Happily, you can quickly re-run the
pipeline and it will reuse any already generated intermediate files.

[image: Flowchart summarising THAPBI PICT pipeline, from raw paired FASTQ files to reports, using metadata.]The first worked example covers these issues, with
excerpts of the expected output.





            

          

      

      

    

  

    
      
          
            
  
Worked Examples

While THAPBI PICT stands for Phytophthora ITS1 Classification Tool, with
appropriate primer settings and a custom database, it can be applied to other
organisms and/or barcode marker sequences.

These worked examples use public datasets from published papers, with various
markers covering oomycetes, fungi, animals and plants. The main criteria has
been mock communities with known species composition.





	Environmental Phytophthora ITS1 - A simple example using the default primers and
database. Based on a paper from earlier in the THAPBI Phyto-Threats project:


Riddell et al. (2019) Metabarcoding reveals a high diversity of woody
host-associated Phytophthora spp. in soils at public gardens and
amenity woodlands in Britain. https://doi.org/10.7717/peerj.6931






	Environmental Oomycetes ITS1 - An example where the defaults can be used, but
ideally requires a different primer pair and a custom database. Based on:


Redekar et al. (2019) Diversity of Phytophthora, Pythium, and
Phytopythium species in recycled irrigation water in a container
nursery. https://doi.org/10.1094/PBIOMES-10-18-0043-R






	Drained fish ponds 12S - An example with a single marker and custom database.
Based on:


Muri et al. (2020) Read counts from environmental DNA (eDNA)
metabarcoding reflect fish abundance and biomass in drained ponds.
https://doi.org/10.3897/mbmg.4.56959






	Fungal Mock Community ITS1 & 2 - An example with multiple markers (including two
sequenced together) requiring separate primers settings and databases, based
on:


Bakker (2018) A fungal mock community control for amplicon sequencing
experiments. https://doi.org/10.1111/1755-0998.12760






	Great Lakes Mock Community 16S - An example with two mitochondrial markers (sequenced
separately), with mock communities, where we focus on the minimum abundance
threshold. Based on:


Klymus et al. (2017) Environmental DNA (eDNA) metabarcoding assays to
detect invasive invertebrate species in the Great Lakes.
https://doi.org/10.1371/journal.pone.0177643






	Bat Mock Community COI - A single marker example in bats, showing importance of
the database content with the default classifier. Based on:


Walker et al. (2019) A fecal sequel: Testing the limits of a genetic
assay for bat species identification.
https://doi.org/10.1371/journal.pone.0224969






	Synthetic controls with fungal ITS2 - A single marker example in fungi, with mock
biological communities and synthetic control sequences. Based on:


Palmer et al. (2018) Non-biological synthetic spike-in controls and the
AMPtk software pipeline improve mycobiome data.
https://doi.org/10.7717/peerj.4925






	Soil Nematode Mock Community - Four markers (sequenced separately) in a soil nematode
mock community. Based on:


Ahmed et al. (2019) Metabarcoding of soil nematodes: the importance of
taxonomic coverage and availability of reference sequences in choosing
suitable marker(s)
https://doi.org/10.3897/mbmg.3.36408






	Pest Insect Mock Communities - Three markers (sequenced together) in insect mock
communities. Based on:


Batovska et al. (2021) Developing a non-destructive metabarcoding
protocol for detection of pest insects in bulk trap catches
https://doi.org/10.1038/s41598-021-85855-6






	Endangered Species Mixes 16S etc - A dozen markers in animals and plants (sequenced
together). Based on:


Arulandhu et al. (2017) Development and validation of a multi-locus DNA
metabarcoding method to identify endangered species in complex samples.
https://doi.org/10.1093/gigascience/gix080








For each worked example there is a different sub-folder in the THAPBI PICT
source code under examples/ containing at least setup.sh to do one-off
setup like downloading the public data, and run.sh to execute the main
analysis discussed. There will usually be assorted other files like reference
sequences, or metadata.tsv.

Running the examples will create or use subdirectories raw_data/ for the
downloaded FASTQ files, intermediate/ for per-sample working files, and
summary/ for the final output reports. Where the example includes positive
controls like mock communities, the expected species content is recorded under
expected/ in per-sample files.




            

          

      

      

    

  

    
      
          
            
  
Environmental Phytophthora ITS1

This example is based on the following paper from earlier in the THAPBI
Phyto-Threats project, where the original analysis used the precursor pipeline
metapy:


Riddell et al. (2019) Metabarcoding reveals a high diversity of woody
host-associated Phytophthora spp. in soils at public gardens and amenity
woodlands in Britain. https://doi.org/10.7717/peerj.6931




Importantly, they used the same PCR primers, and therefore analysis with this
tool’s default settings including the provided database is appropriate.

The Quick Start described a simplified use of the THAPBI PICT tool to
assess a single Illumina MiSeq sequencing run using the thapbi_pict
pipeline command, as a flowchart:

[image: Flowchart summarising THAPBI PICT pipeline, from raw paired FASTQ files to reports, using metadata.]Here we will run over the same process using real Phytophthora ITS1 data,
calling the individual commands within the default pipeline - and include
metadata for reporting. We then run the equivalent all-in-one pipeline command.

Finally, since the sample data includes some positive controls, we can look at
assessing the classifier performance.



	Marker data

	Preparing the sequence data

	Classifying sequences

	Metadata

	Summary reports

	Edit Graph

	Pipeline with metadata

	Assessing the classifier








            

          

      

      

    

  

    
      
          
            
  
Marker data

Either clone the THAPBI PICT source code repository, or decompress the
latest source code release (.tar.gz file). You should find it contains
a directory examples/woody_hosts/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis
discussed.

The documentation goes through running each step of the analysis gradually,
before finally calling pipeline command to do it all together. We provide
script run.sh to do the final run-though automatically (first without
any metadata, then again with it), but encourage you to follow along the
individual steps first.


FASTQ data

The raw data is from two Illumina MiSeq runs, a whole 96-well plate from 2016,
and about half the samples from a second 96-well plate sequenced in 2017
(where the rest of the plate was samples from a separate ITS1 study). There
are multiple replicates from each of 14 sample sites, plus controls.
The raw FASTQ files are too large to include with the THAPBI PICT source code.

Script setup.sh will download the raw FASTQ files for Riddell et al.
(2019) from https://doi.org/10.5281/zenodo.3342957

It will download 244 raw FASTQ files (122 pairs), about 215MB on disk



Amplicon primers & reference sequences

The ITS1 primers used here match the THAPBI PICT defaults, so the default
database can also be used.



Metadata

The provided file metadata.tsv is an expanded version of Supplementary
Table 1 from the original paper, adding a column for the Illumina MiSeq sample
names, rows for the controls.

The 16 columns are as follows, where 4 to 15 are in pairs for tree/shrub broad
taxonomic grouping and health status (H, healthy; D, symptoms/stump/dead):


	Anonymised site number (with leading zero, “01” to “14”), or control name


	Approximate altitude at centre


	Underlying soil type


	Healthy Cupressaceae


	Diseased Cupressaceae


	Healthy other conifers


	Diseased other conifers


	Healthy Ericaceae


	Diseased Ericaceae


	Healthy Fagaceae or Nothofagaceae


	Diseased Fagaceae or Nothofagaceae


	Healthy other angiosperms


	Diseased other angiosperms


	Healthy other


	Diseased other


	MiSeq Sample(s) (semi-colon separated list)




When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 16 -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15





These settings are described in detail later (see Metadata). This
example is important in that column 16 contains multiple entries where a site
had multiple sequenced samples (replicates).



Other files

Subdirectory expected/ contains four plain text tab-separated files,
describing the expected species in some mock community positive controls:


	DNA15MIX.known.tsv


	DNA10MIX_bycopynumber.known.tsv


	DNA10MIX_diluted25x.known.tsv


	DNA10MIX_undiluted.known.tsv








            

          

      

      

    

  

    
      
          
            
  
Preparing the sequence data


Running thapbi-pict prepare-reads

Calling thapbi-pict prepare-reads is the first action done by the top
level thapbi_pict pipeline command.

$ thapbi_pict prepare-reads -h
...





Assuming you have the FASTQ files in raw_data/ as described above:

$ thapbi_pict prepare-reads -i raw_data/ -o intermediate/
...





For each input FASTQ file pair raw_data/<sample_name>_R1.fastq.gz and
raw_data/<sample_name>_R2.fastq.gz you should get a small FASTA file
intermediate/<marker_name>/<sample_name>.fasta. In this case, there are
multiple replicates from each of 14 sample sites where the file name stem is
Site_<N>_sample_<X>, plus the controls.

$ ls -1 intermediate/ITS1/*.fasta | wc -l
122





Note this is robust to being interrupted and restarted (e.g. a job might time
out on a cluster).

You should find 122 small FASTA files in the intermediate/ITS1/ folder

Note that four of these FASTA files are empty, Site_13_sample_7.fasta and
Site_9_sample_4-3.fasta (nothing above the minimum threshold), and both
negative controls (good).


Warning

So far this example omits a key consideration - telling the tool which
samples are negative controls, and/or manually setting the minimum read
abundance. See below.





Intermediate FASTA files

What the prepare command does can be briefly summarised as follows:


	Merge the overlapping paired FASTQ reads into single sequences (pairs which
do not overlap are discarded, for example from unexpectedly long fragments,
or not enough left after quality trimming).


	Primer trim (reads without both primers are discarded).


	Convert into a non-redundant FASTA file, with the sequence name recording
the abundance (discarding sequences of low abundance).


	If synthetic controls are defined in the DB, look for matches using k-mers.
These will be discounted when using negative control samples to raise the
minimum abundance threshold for the plate.




For each input <sample_name>_R1.fastq.gz and <sample_name>_R2.fastq.gz
FASTQ pair we get a single much smaller FASTA file <sample_name>.fasta.


Warning

The intermediate FASTA files can legitimately have no sequences which
passed the thresholds. This can happen when a PCR failed, and is expected
to happen on blank negative controls.




Warning

The intermediate FASTA files start with an atypical header made up of
lines starting #. Some tools need this to be removed, but others will
accept this as valid FASTA format.



For example, here the header tells us this sample started with 6136 reads in
the paired FASTQ files, down to just 4180 after processing (with the final
step being the abundance threshold).

$ head -n 12 intermediate/ITS1/Site_1_sample_1.fasta
#marker:ITS1
#left_primer:GAAGGTGAAGTCGTAACAAGG
#right_primer:GCARRGACTTTCGTCCCYRC
#threshold_pool:raw_data
#raw_fastq:6136
#flash:5900
#cutadapt:5886
#abundance:5194
#threshold:2
#singletons:692
>2e4f0ed53888ed39a2aee6d6d8e02206_2269
TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAACTTTCCACGTGAACTGTATCGAACAACTAGTTGG
GGGTCTTGTTTGGCGTGCGGCTGCTTCGGTAGCTGCTGCTAGGCGAGCCCTATCACGGCGAGCGTTTGGACTTCGGTCTG
AGCTAGTAGCTATTTTTTAAACCCATTCTTTAATACTGATTATACT





The sequence entries in the FASTA file are named <checksum>_<abundance>.
Here <checksum> is the MD5 checksum [https://en.wikipedia.org/wiki/MD5]
of the sequence, and this is used as a unique shorthand. It is a 32 character
string of the digits 0 to 9 and lower cases letters a to f
inclusive, like a559aa4d00a28f11b83012e762391259. These MD5 checksums are
used later in the pipeline, including in reports. The <abundance> is just
an integer, the number of paired reads which after processing had this unique
sequence.

Any description entry in the FASTA records after the identifier is the name of
the synthetic spike-in sequence in the database that was matched to using
k-mer counting (so 2e4f0ed53888ed39a2aee6d6d8e02206_2269 was not a
spike-in sequence).

The order of the FASTA sequences is in decreasing abundance, so the first
sequence shown 2e4f0ed53888ed39a2aee6d6d8e02206_2269 is the most common,
and so that read count 2269 also appears in the headers as the maximum
non-spike-in abundance (with no spike-in reads in this sample).

Note the sequence in the FASTA file is written as a single line in upper
case. With standard FASTA line wrapping at 60 or 80 characters, the ITS1
sequences would need a few lines each. However, they are still short enough
that having them on one line without line breaks is no hardship - and it is
extremely helpful for simple tasks like using grep to look for a
particular sequence fragment at the command line.

Note that for this documentation, the FASTA output has had the sequences line
wrapped at 80 characters.

$ grep "^>" intermediate/ITS1/Site_1_sample_1.fasta | head -n 8
>2e4f0ed53888ed39a2aee6d6d8e02206_2269
>c1a720b2005f101a9858107545726123_715
>96e0e2f0475bd1617a4b05e778bb04c9_330
>fb30156d7f66c8abf91f9da230f4d19e_212
>dcd6316eb77be50ee344fbeca6e005c7_194
>972db44c016a166de86a2bacab3f4226_182
>d9bc3879fdab3b4184c04bfbb5cf6afb_165
>ed15fefb7a3655147115fc28a8d6d671_113





The final output has just eight unique sequences accepted, happily none of
which match the synthetic controls. The most common is listed first, and had
MD5 checksum 2e4f0ed53888ed39a2aee6d6d8e02206 and was seen in 2269 reads.

You could easily find out which other samples had this unique sequence using
the command line search tool grep as follows:

$ grep 2e4f0ed53888ed39a2aee6d6d8e02206 intermediate/*.fasta
...





Or, since we deliberately record the sequences without line wrapping, you
could use grep with the actual sequence instead (which might spot some
slightly longer entries as well).

You can also answer this example question from the read report produced later.



Abundance thresholds

As you might gather from reading the command line help, there are two settings
to do with the minimum read absolute abundance threshold, -a or
--abundance (default 100), and -n or --negctrls for specifying
negative controls (default none).

(See also Abundance & Negative Controls which discusses the use of the fractional
abundance threshold -f or --abundance-fraction and how to set this
dynamically with synthetic control samples with -y or --synthetic.)

If any negative controls are specified, those paired FASTQ files are processed
first. If any of these contained ITS1 sequences above the specified minimum
absolute abundance threshold (default 100), that higher number is used as
the minimum abundance threshold for the non-control samples. For example, say
one control had several ITS1 sequences with a maximum abundance of 124, and
another control had a maximum ITS1 abundance of 217, while the remaining
controls had no ITS1 sequence above the default level. In that case, the tool
would take maximum 217 as the abundance threshold for the non-control samples.

If you wished to lower the threshold from the default to 50, you could use:

$ rm -rf intermediate/ITS1/*.fasta  # Are you sure?
$ thapbi_pict prepare-reads -i raw_data/ -o intermediate/ -a 50
...






Warning

By default thapbi_pict prepare-reads and thapbi_pict pipeline will
reuse existing intermediate FASTA files, so you must explicitly delete any
old FASTA files before the new abundance threshold will have any effect.




Warning

Setting the abundance threshold low (say under 50) risks background
contamination coming through into the results. Do not do this without
strong justification (e.g. look at suitable controls over multiple plates
from your own laboratory procedure).




Warning

Setting the abundance threshold very low (under 10) has the additional
problem that the number of unique sequences accepted will increase many
times over. This will dramatically slow down the rest of the analysis.
This is only advised for investigating single samples.



For the woody host data, each plate had a negative control sample which should
contain no ITS1 sequences. We can specify the negative controls with -n or
--negctrls by entering the four FASTQ filenames in full, but since they
have a common prefix we can use a simple wildcard:

$ thapbi_pict prepare-reads -i raw_data/ -o intermediate/ -n raw_data/NEGATIVE*.fastq.gz
...





For this sample data, happily neither of the negative controls have any ITS1
present above the default threshold, so this would have no effect.

For the THAPBI Phyto-Threats project we now run each 96-well PCR plate with
multiple negative controls. Rather than a simple blank, these include a known
mixture of synthetic sequences of the same length, same nucelotide
composition, and also same di-nucleotide composition as real Phytophthora
ITS1. This means we might have say 90 biological samples which should contain
ITS1 but not the synthetics controls, and 6 negative controls which should
contain synthetic controls but not ITS1.

We therefore run thapbi_pict prepare-reads separately for each plate,
where any ITS1 contamination in the synthetic controls is used to set a plate
specific minimum abundance. This means we cannot run thapbi_pict pipeline
on multiple plates at once (although we could run it on each plate, we
generally want to produce reports over multiple plates).





            

          

      

      

    

  

    
      
          
            
  
Classifying sequences


Running thapbi-pict classify

The second stage of the pipeline is to merge all the sample specific FASTA
files into one non-redundant sequence vs sample TSV file, ready to classify all
the unique sequences in it. These steps can be run separately:

$ thapbi_pict sample-tally -h
...
$ thapbi_pict classify -h
...





There are a number of options here, but for the purpose of this worked example
we will stick with the defaults and tell it to look for FASTA files in the
intermediate/ directory.

$ thapbi_pict sample-tally -i intermediate/ITS1/*.fasta -o summary/thapbi-pict.ITS1.tally.tsv
...
$ thapbi_pict classify -i summary/thapbi-pict.ITS1.tally.tsv
...





Here we have not set the output folder with -o or --output, which
means the classify step will default to writing the classifier TSV output file
next to the input tally TSV file. There should now be two new files:

$ ls -1 summary/thapbi-pict.ITS1.*.tsv
summary/thapbi-pict.ITS1.onebp.tsv
summary/thapbi-pict.ITS1.tally.tsv





If you have the biom-format Python library installed, adding --biom to
the command line will result in a summary/thapbi-pict.ITS1.onebp.biom file
as well, equivalent to the data in summary/thapbi-pict.ITS1.tally.tsv but
potentially more useful for export to other analysis tools.



Intermediate TSV files

For each input tally TSV file <name>.tally.tsv another plain text TSV file
is generated named <name>.<method>.tsv where the default method is
onebp (which looks for perfect matches or up to one base pair different).
These are both sequence versus sample observation tables of counts, but with
sample metadata in header lines (starting with #) and additional columns
for the amplicon marker sequence, and for the classifier output also the NCBI
taxid(s), and genus-species of any classification(s).

These files are not really intended for human use, but are readable. Here we
skip ten lines of sample metadata at the start, and all the sample-specific
counts in columns 2 to 123, and the sequence in column 124, showing just the
first and final two columns:

$ tail -n +10 summary/thapbi-pict.ITS1.onebp.tsv | head | cut -f 1,125,126
<SEE TABLE BELOW>





Viewing it like this is not ideal, although there are command line tools which
help. You could instead open the file in R, Excel, etc:



	#Marker/MD5_abundance

	taxid

	genus-species





	ITS1/2e4f0ed53888ed39a2aee6d6d8e02206_163094

	221518

	Phytophthora pseudosyringae



	ITS1/d9bc3879fdab3b4184c04bfbb5cf6afb_83653

	631361

	Phytophthora austrocedri



	ITS1/32159de6cbb6df37d084e31c37c30e7b_28976

	67594

	Phytophthora syringae



	ITS1/ed15fefb7a3655147115fc28a8d6d671_28786

	78237

	Phytophthora gonapodyides



	ITS1/972db44c016a166de86a2bacab3f4226_28515

	2056922

	Phytophthora x cambivora



	ITS1/c1a720b2005f101a9858107545726123_20400

	78237

	Phytophthora gonapodyides



	ITS1/96e0e2f0475bd1617a4b05e778bb04c9_17392

	78237

	Phytophthora gonapodyides



	ITS1/f27df8e8755049e831b1ea4521ad6eb3_16369

	2496075;2897317;29920

	Phytophthora aleatoria;Phytophthora alpina;Phytophthora cactorum



	ITS1/21d6308d89d74b8ed493d73a2cb4adb5_16169

	2056922

	Phytophthora x cambivora






The first entry says the most abundance sequence with MD5 checksum
2e4f0ed53888ed39a2aee6d6d8e02206 was seen in a total of 163094 reads, and
was classified as Phytophthora pseudosyringae (NCBI taxid 221518). Another
common sequence has been matched to two closely related species Phytophthora
cambivora (NCBI taxid 53983) and Phytophthora x cambivora (NCBI taxid
2056922).

If you are familiar with the command line search tool grep and the regular
expression syntax, you should find the format of these intermediate TSV files
lends itself to some simple searches. For example, you could see which samples
had matches to Phytophthora rubi using grep as follows:

$ grep "Phytophthora rubi" summary/thapbi-pict.ITS1.onebp.tsv | cut -f 1,125,126
ITS1/d8613e80b8803b13f7ea5d097f8fe46f_899  129364  Phytophthora rubi
$ grep d8613e80b8803b13f7ea5d097f8fe46f intermediate/ITS1/*.fasta
intermediate/ITS1/DNA10MIX_bycopynumber.fasta:>d8613e80b8803b13f7ea5d097f8fe46f_279
intermediate/ITS1/DNA10MIX_diluted25x.fasta:>d8613e80b8803b13f7ea5d097f8fe46f_349
intermediate/ITS1/DNA10MIX_undiluted.fasta:>d8613e80b8803b13f7ea5d097f8fe46f_271





The summary reports would also answer this particular question, but this kind
of search can be useful for exploring specific questions.





            

          

      

      

    

  

    
      
          
            
  
Metadata

The Quick Start introduced the typical pipeline taking paired FASTQ
files though to reports, and mentioned the idea of enhancing the reports with
sample metadata.

[image: Flowchart summarising THAPBI PICT pipeline, from raw paired FASTQ files to reports, using metadata.]In the following we will show the reports with and without metadata.
As described earlier (see Marker data), metadata.tsv is a table of
metadata based on table S1 in the paper, with 16 columns.

We will use -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 (or --metacols)
meaning show columns 1 to 15 inclusive in the reports (in that order).

Finally, we will use -x 16 or --metaindex 16 to indicate column 16
contains cross references to the sequenced sample filename stems (semi-colon
separated). They will be shown in this order.

This cross referencing idea is key to getting the best results from attaching
metadata to your sequenced samples. Here is an abridged representation of the
table, showing column one (site or control name), column two (altitude), and
finally column 16 which has the filename stems of the sequence data belonging
to this row of the table (semi-colon separated list).



	#Site

	Altitude

	…

	MiSeq Sample(s)





	01

	30

	…

	Site_1_sample_1; Site_1_sample_2; Site_1_sample_3; Site_1_sample_4; Site_1_sample_5; Site_1_sample_6; Site_1_sample_7; Site_1_sample_8; Site_1_sample_9-2; Site_1_sample_10



	02

	55

	…

	Site_2_sample_1; Site_2_sample_2; Site_2_sample_3; Site_2_sample_4; Site_2_sample_5; Site_2_sample_6; Site_2_sample_7; Site_2_sample_8; Site_2_sample_9; Site_2_sample_10



	03

	45

	…

	Site_3_sample_1; Site_3_sample_2; Site_3_sample_4; Site_3_sample_7; Site_3_sample_8; Site_3_sample_9



	04

	20

	…

	Site_4_sample_1; Site_4_sample_2; Site_4_sample_3; Site_4_sample_3-2; Site_4_sample_4; Site_4_sample_5; Site_4_sample_6; Site_4_sample_8; Site_4_sample_9; Site_4_sample_10



	05

	100

	…

	Site_5_sample_1; Site_5_sample_2; Site_5_sample_4; Site_5_sample_5; Site_5_sample_6; Site_5_sample_8; Site_5_sample_9



	06

	5

	…

	Site_6_sample_1; Site_6_sample_2-2; Site_6_sample_3-1; Site_6_sample_4; Site_6_sample_5-3; Site_6_sample_6; Site_6_sample_7-1; Site_6_sample_8-2; Site_6_sample_9; Site_6_sample_10



	07

	105

	…

	Site_7_sample_1; Site_7_sample_2; Site_7_sample_3; Site_7_sample_5; Site_7_sample_6; Site_7_sample_7; Site_7_sample_8; Site_7_sample_9; Site_7_sample_10



	08

	45

	…

	Site_8_sample_1; Site_8_sample_2; Site_8_sample_3; Site_8_sample_4; Site_8_sample_5-2; Site_8_sample_6; Site_8_sample_7; Site_8_sample_7-2; Site_8_sample_8; Site_8_sample_9



	09

	15

	…

	Site_9_sample_1; Site_9_sample_4-3; Site_9_sample_6; Site_9_sample_7; Site_9_sample_8; Site_9_sample_9; Site_9_sample_10



	10

	30

	…

	Site_10_sample_7; Site_10_sample_8



	11

	80

	…

	Site_11_sample_1; Site_11_sample_2; Site_11_sample_3; Site_11_sample_4; Site_11_sample_5; Site_11_sample_6; Site_11_sample_7; Site_11_sample_8; Site_11_sample_9; Site_11_sample_10



	12

	30

	…

	Site_12_sample_1; Site_12_sample_2; Site_12_sample_3-3; Site_12_sample_4; Site_12_sample_5-3; Site_12_sample_6; Site_12_sample_8; Site_12_sample_9; Site_12_sample_10



	13

	300

	…

	Site_13_sample_1; Site_13_sample_2; Site_13_sample_4; Site_13_sample_5; Site_13_sample_6; Site_13_sample_7; Site_13_sample_8; Site_13_sample_9; Site_13_sample_10



	14

	30

	…

	Site_14_sample_1-2; Site_14_sample_2; Site_14_sample_3; Site_14_sample_4; Site_14_sample_5; Site_14_sample_6; Site_14_sample_10



	DNA10MIX

	
	…

	DNA10MIX_undiluted; DNA10MIX_diluted25x; DNA10MIX_bycopynumber



	DNA16MIX

	
	…

	DNA16MIX



	NEGATIVE

	
	…

	NEGATIVE_firstplate; NEGATIVE_secondplate






Also note that in column one we have listed the numerical site names with
leading zeros giving 01 to 14 to ensure they sort as expected.




            

          

      

      

    

  

    
      
          
            
  
Summary reports


Running thapbi_pict summary

The reports from the pipeline can be generated separately by the thapbi_pict
summary command:

$ thapbi_pict summary -h
...





To mimic what the pipeline command would do, run the following:

$ thapbi_pict summary -i intermediate/ \
  summary/thapbi-pict.ITS1.onebp.tsv \
  -o summary/thapbi-pict.ITS1
...





Note the trailing slash \ at the end of the first line indicates the
command continues on the next line. You can actually type this at the standard
Linux command prompt (or include it in a copy and paste), or just enter this
as one very long command.

We will look at the output in a moment, along side the equivalent reports
generated with metadata (see linked discussion about column
numbers):

$ thapbi_pict summary -i intermediate/ \
  summary/thapbi-pict.ITS1.onebp.tsv \
  -o summary/with-metadata.ITS1 \
  -t metadata.tsv -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 -x 16
...





Both the read report and sample report are tables, produced as both
computer-friendly plain text tab-separated variable (TSV), and human-friendly
Excel (with colors and conditional formatting).



Read Report

The heart of the read report is a large table, of unique sequences (ASVs rows)
versus sequenced samples (columns), with read abundance counts. There are
additional columns with sequence information, and when Metadata is
present, extra rows at the start with sample information.

This read report has a row for each unique sequence. The first columns are the
marker name (here always “ITS1”), the unique sequence MD5 checksum, any
species prediction, the sequence itself, the number of samples it was detected
in above the threshold, the maximum number of reads with this sequence in any
one sample, and the total number of reads (from samples where it was above the
threshold). Then the main columns (one per sample) list the abundance of each
unique sequence in that sample (if above the threshold).

In the Excel version, conditional formatting is used to highlight the non-zero
counts with a red background. Furthermore, with metadata it will attempt to
assign repeated bands of background color to groups (pink, orange, yellow,
green, blue). In this example, each sample site gets a new color:

[image: Screenshot of Excel showing ``summary/with-metadata.samples.onebp.xlsx`` file.]
Typical sample naming schemes will result in replicates as neighbouring
columns - meaning you should see very similar patterns of red (non-zero).
Certainly in this dataset scanning horizontally we do see some sequences
clearly show presence/absence patterns consistent with the samples.

The default row sorting will result in a dominant sequence being followed by
any close variants assigned to the same species. Many of these rows will
represent PCR artefacts found in just one or two samples. This contributes
to the “halo” effect seen in the Edit Graph representation, discussed
next.



Sample Report

The heart of the sample report is a table of samples (rows) versus species
predictions (columns), with read abundance counts. There are additional
columns with sample read counts, and when Metadata is present, extra
columns at the start with sample information.

Here is a screenshot of the summary/with-metadata.ITS1.samples.onebp.xlsx
file opened in Excel:

[image: Excel screenshot showing with-metadata.ITS1.samples.onebp.xlsx]
The metadata is in the first columns, then the sequence filename stem, a text
summary of the species predictions, some inferred sequence count data, and the
one column for each unique species or ambiguous species combinations.

Using the metadata each site has one or more rows in the same background
color (pink, orange, yellow, green, blue, repeated), with one row for each
time it was sequenced (the per-site sampling).

The values are total read counts for that row/column, with conditional
formatting applied so non-zero entries have a bright red background.

For example, the final rows are the two DNA mixture controls (blue and pink)
and the negative controls (orange). These have almost no metadata, and the
negative controls read counts are all zero.

The plain text table with-metadata.ITS1.samples.onebp.xlsx is the same,
but without the colors and formatting. The files generated without metadata
(thapbi-pict.ITS1.samples.onebp.xlsx etc) lack the extra columns and the
background color bands.

The files without metadata start with the FASTQ filename stem as the inferred
sample name in column 1:

$ cut -f 1 summary/thapbi-pict.ITS1.samples.onebp.tsv | head
#Sequencing sample
DNA10MIX_bycopynumber
DNA10MIX_diluted25x
DNA10MIX_undiluted
DNA15MIX
NEGATIVE_firstplate
NEGATIVE_secondplate
Site_10_sample_7
Site_10_sample_8
Site_11_sample_1





In contrast, the 15 extra metadata columns are inserted before this, and are
used to sort the samples:

$ cut -f 1,16 summary/with-metadata.ITS1.samples.onebp.tsv | head
#Site  Sequencing sample
01     Site_1_sample_1
01     Site_1_sample_2
01     Site_1_sample_3
01     Site_1_sample_4
01     Site_1_sample_5
01     Site_1_sample_6
01     Site_1_sample_7
01     Site_1_sample_8
01     Site_1_sample_9-2





Like the FASTQ filename stems, the metadata is still sorted as strings, but by
using leading zeros and YYYY-MM-DD style for any dates, you can achieve a
logical presentation.

After the sequencing sample name (the FASTQ filename stem), we have the
classification summary as a comma separated list - attempting to summarise
the later per-species columns. Species listed here with (*) are where
sequences matched multiple species equally well. For example, Phytophthora
andina, P. infestans, and P. ipomoeae, share an identical ITS1 marker.

The next columns are derived from the data itself, reads counts in the samples
as raw FASTQ, after read merging with Flash, primer trimming with Cutadapt,
information about the abundance thresholds used (omitted below),
the maximum ASV read count for non-spike-in or spike-in sequences, number of
singletons, total number of reads for the accepted ASVs (i.e. passing the
abundance threshold), and the number of unique ASVs accepted.
It may be easier to look at this in Excel, but at the command line:

$ cut -f 16,18-20,24-28 summary/with-metadata.ITS1.samples.onebp.tsv | head
<SEE TABLE BELOW>





As a table:



	Sequencing sample

	Raw FASTQ

	Flash

	Cutadapt

	Max non-spike

	Max spike-in

	Singletons

	Accepted

	Unique





	Site_1_sample_1

	6136

	5900

	5886

	2269

	0

	692

	4180

	8



	Site_1_sample_2

	6135

	5955

	5947

	2532

	0

	671

	4548

	8



	Site_1_sample_3

	6778

	6484

	6470

	2146

	0

	579

	5060

	5



	Site_1_sample_4

	4145

	3984

	3974

	1499

	0

	469

	2852

	7



	Site_1_sample_5

	4722

	4232

	4213

	3130

	0

	433

	3130

	1



	Site_1_sample_6

	12633

	12070

	12034

	5864

	0

	1217

	9208

	4



	Site_1_sample_7

	7560

	7170

	7141

	3372

	0

	741

	5402

	5



	Site_1_sample_8

	6324

	5956

	5942

	2037

	0

	630

	4524

	5



	Site_1_sample_9-2

	4542

	4335

	4331

	2780

	0

	385

	3436

	2






Finally, we get to the main part of the sample table, one column per
classifier result, with the number of reads. Picking out some examples:

$ cut -f 16,31,41,64 summary/with-metadata.ITS1.samples.onebp.tsv | head
<SEE TABLE BELOW>





As a table:



	Sequencing sample

	Phytophthora austrocedri

	Phytophthora gonapodyides

	Unknown





	Site_1_sample_1

	165

	1158

	0



	Site_1_sample_2

	445

	718

	101



	Site_1_sample_3

	0

	1110

	1313



	Site_1_sample_4

	204

	861

	0



	Site_1_sample_5

	0

	3130

	0



	Site_1_sample_6

	0

	0

	0



	Site_1_sample_7

	0

	902

	161



	Site_1_sample_8

	0

	1863

	116



	Site_1_sample_9-2

	0

	0

	656






Generally we hope to see single species predictions for each ASV, however when
there are conflicts such as equally good matches, or a reference sequence that
is shared between species, both are reported. For example:

$ cut -f 16,35 summary/with-metadata.ITS1.samples.onebp.tsv | head
<SEE TABLE BELOW>





As a table:



	Sequencing sample

	Phytophthora chlamydospora;Phytophthora x stagnum





	Site_1_sample_1

	0



	Site_1_sample_2

	0



	Site_1_sample_3

	0



	Site_1_sample_4

	0



	Site_1_sample_5

	0



	Site_1_sample_6

	1217



	Site_1_sample_7

	0



	Site_1_sample_8

	0



	Site_1_sample_9-2

	0






In this example, Site_1_sample_6 had sequences matching both
Phytophthora chlamydospora and Phytophthora x stagnum. These species are
listed with a (*) suffix in the earlier classification summary column:

$ grep Site_1_sample_6 summary/with-metadata.ITS1.samples.onebp.tsv | cut -f 16,17
Site_1_sample_6  Phytophthora castanetorum, Phytophthora chlamydospora(*), Phytophthora pseudosyringae, Phytophthora syringae, Phytophthora x stagnum(*)









            

          

      

      

    

  

    
      
          
            
  
Edit Graph


Running thapbi_pict edit-graph

This is not run as part of the pipeline command, but must be run separately:

$ thapbi_pict edit-graph -h
...





This command does not use metadata, but can optionally use the intermediate
TSV files. It requires the sample tally file:

$ thapbi_pict edit-graph -i summary/thapbi-pict.ITS1.tally.tsv \
    -o summary/thapbi-pict.edit-graph.onebp.xgmml
...





This will generate an XGMML (eXtensible Graph Markup and Modeling Language)
file by default, but you can also request other formats including PDF
(which requires additional dependencies including GraphViz):

$ thapbi_pict edit-graph -i summary/thapbi-pict.ITS1.tally.tsv \
      -o summary/thapbi-pict.edit-graph.onebp.pdf -f pdf
...







Nodes and edges

In this context, we are talking about a graph in the mathematical sense of
nodes connected by edges. Our nodes are unique sequences (which we can again
label by the MD5 checksum), and the edges are how similar two sequences are.
Specially, we are using the Levenshtein edit distance. This means an edit
distance of one could be a single base substitution, insertion or deletion.

The tool starts by compiling a list of all the unique sequences in your
samples (i.e. all the rows in the thapbi_pict read-summary report), and
optionally all the unique sequences in the database. It then computes the
edit distance between them all (this can get slow).

We build the network graph by adding edges for edits of up to three base pairs
(by default). This gives small connected components or sub-graphs which are
roughly at the species level.

Redundant edges are dropped, for example if A is one edit away from B,
and B is one edit away from C, there is need to draw the two edit line
from A to C.

We draw the nodes as circles, scaled by the number of samples that unique
sequence appeared in. If that exact sequence is in the database, is it colored
according to genus, defaulting to grey.



	Color

	RGB value

	Meaning





	Red

	FF0000

	Phytophthora



	Lime

	00FF00

	Peronospora



	Blue

	0000FF

	Hyaloperonospora



	Yellow

	FFFF00

	Bremia



	Cyan

	00FFFF

	Pseudoperonospora



	Magenta

	FF00FF

	Plasmopara



	Maroon

	800000

	Nothophytophthora



	Olive

	808000

	Peronosclerospora



	Green

	008000

	Perofascia



	Purple

	800080

	Paraperonospora



	Teal

	008080

	Protobremia



	Dark red

	8B0000

	Other known genus



	Dark orange

	FF8C00

	Conflicting genus



	Orange

	FFA500

	Synthetic sequence



	Grey

	808080

	Not in the database






The edges are all grey, solid for a one base pair edit distance, dashed for a
two base pair edit distance, and dotted for a three base pair edit distance.



Viewing the PDF

You should be able to open the PDF file easily, and get something like this -
lots of red circles for Phytophthora, some grey circles for sequences not
in the database, and plenty of grey straight line edges between them.

[image: ../../_images/2b9a379d7c9d2091f1be6542c58ea6cddce2e883.png]
In the PDF (and XGMML) output, nodes are coloured by genus (red for
Phytophthora), but only labelled if in the database at species level.

The edges are solid for a one base pair edit distance, dashed for a two base
pair edit distance, and dotted for a three base pair edit distance. All grey.



Viewing the XGMML

You should be able to open the PDF file easily, and while it is interesting
it is read only and non-interactive. This is where the XGMML output shines.
You will need to install the free open source tool  Cytoscape [https://cytoscape.org/] to use this.

Open Cytoscape, and from the top level menu select File, Import,
Network from file..., then select
summary/thapbi-pict.edit-graph.onebp.xgmml (the XGMML file created above).

You should get something like this, where initially all the nodes are drawn
on top of each other:

[image: ../../_images/a96865b1dad118984d0f64ff75b33b3480672269.png]
From the top level menu select “Layout”, “Perfuse Force Directed Layout”,
“Edit-distance-weight”, and you should then see something prettier - if
you zoom in you should see something like this:

[image: ../../_images/f306f0e6ee672ca872678caa407bf5c0a0d9dbe9.png]
This time you can interact with the graph, moving nodes about with the mouse,
try different layouts, view and search the attributes of the nodes and edges.

Here the nodes are labelled with the species if they were in the database
at species level, or otherwise as the start of the MD5 checksum in curly
brackets (so that they sort nicely). The default node colors are as in the
PDF output, likewise the grey edge styles.

The node attributes include the full MD5 (so you can lookup the full sequence
or classification results for any node of interest), sample count, total read
abundance (both numbers shown in the thapbi_pict summary reports),
genus (allowing you to do your own color scheme), and species if known.

The edge attributes include Edit-distance (values 1, 2, 3
for number of base pairs difference between sequences) and matching
Edit-distance-weight (values 3, 2, 1 used earlier for the
layout where we prioritise the small edit distance edges).



Halo effect

In this final screenshot we have zoomed in and selected all 11 nodes in the
connected component centered on P. pseudosyringae (Cytoscape highlights
selected nodes in yellow):

[image: ../../_images/20cda85d04de683394c0249fa1bcde1a6ce671fd.png]
The node table view is automatically filtered to show just these nodes, and we
can see that all the grey nodes appeared in only one sample each - with the
P. pseudosyringae entry in the database in 66 samples, while the one base
away P. ilics sequence was in 6 samples.

This kind of grey-node halo around highly abundance sequences is more common
when plotting larger datasets. It is consistent with PCR artefacts occurring
in just one (or two) samples giving rise to (almost) unique sequences based on
the template sequence.





            

          

      

      

    

  

    
      
          
            
  
Pipeline with metadata


Running thapbi-pict pipeline

Having run all the steps of the typical pipeline individually, we now return
to the top level thapbi_pict pipeline command:

$ thapbi_pict pipeline -h
...





Assuming you have the FASTQ files in raw_data/, we can run the pipeline
command as follows, and should get multiple output report files:

$ thapbi_pict pipeline -i raw_data/ -s intermediate/ \
  -o summary/thapbi-pict
...
$ ls -1 summary/thapbi-pict.*
summary/thapbi-pict.ITS1.onebp.tsv
summary/thapbi-pict.ITS1.reads.onebp.tsv
summary/thapbi-pict.ITS1.reads.onebp.xlsx
summary/thapbi-pict.ITS1.samples.onebp.tsv
summary/thapbi-pict.ITS1.samples.onebp.xlsx
summary/thapbi-pict.ITS1.tally.tsv
summary/thapbi-pict.edit-graph.onebp.pdf
summary/thapbi-pict.edit-graph.onebp.xgmml





As described for the prepare-reads step we should also
specify which of the samples are negative controls, which may be used to
increase the plate level minimum abundance threshold:

$ thapbi_pict pipeline -i raw_data/ -s intermediate/ \
  -o summary/thapbi-pict -n raw_data/NEGATIVE*.fastq.gz
...





And, as described for the summary reports, we can
provide metadata:

$ thapbi_pict pipeline -i raw_data/ -s intermediate/ \
  -o summary/with-metadata -n raw_data/NEGATIVE*.fastq.gz \
  -t metadata.tsv -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 -x 16
...





Finally, as we will review next, we can ask the pipeline to assess the results
against any expected sample species classifications:

$ thapbi_pict pipeline -i raw_data/ expected/ -s intermediate/ \
  -o summary/with-metadata -n raw_data/NEGATIVE*.fastq.gz \
  -t metadata.tsv -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 -x 16
...
$ ls -1 summary/with-metadata.*
summary/with-metadata.ITS1.onebp.tsv
summary/with-metadata.ITS1.assess.confusion.onebp.tsv
summary/with-metadata.ITS1.assess.onebp.tsv
summary/with-metadata.ITS1.assess.tally.onebp.tsv
summary/with-metadata.ITS1.reads.onebp.tsv
summary/with-metadata.ITS1.reads.onebp.xlsx
summary/with-metadata.ITS1.samples.onebp.tsv
summary/with-metadata.ITS1.samples.onebp.xlsx
summary/with-metadata.ITS1.tally.tsv





Here we also used -o (or --output) to specify a different stem for the
report filenames.



Conclusions

For the THAPBI Phyto-Threats project our datasets span multiple plates, but we
want to set plate-specific minimum abundance thresholds. That is taken care of
as long as each plate is in its own directory. For example, you might have
raw_data/plate_NNN/*.fastq.gz and run the pipeline with -i raw_data/).

However, while you could run the pipeline command on all the data in one go,
with access to a computer cluster it will likely be faster to run at least the
(slowest)  prepare-reads stage on separate cluster nodes (e.g. one cluster
job for each plate).





            

          

      

      

    

  

    
      
          
            
  
Assessing the classifier

This sample dataset includes two positive control mock communities.
We know the species which went into the two different DNA mixes used,
so for each sequenced positive control sample we can compare the
expected list of species with the predicted list of species, and thus
count true positives, false positives, false negatives, etc.

We will first do this by hand, and then explore the tool’s own built
in assessment framework.


Counting species for one sample by hand

The woody hosts dataset had two positive control mixes. From the first
plate, a set of 15 Phytophthora species (listed here alphabetically):


	Phytophthora austrocedri


	Phytophthora boehmeriae


	Phytophthora cactorum


	Phytophthora cambivora (now Phytophthora x cambivora)


	Phytophthora chlamydospora


	Phytophthora cinnamomi


	Phytophthora gonapodyides


	Phytophthora ilicis


	Phytophthora kernoviae


	Phytophthora lateralis


	Phytophthora obscura


	Phytophthora plurivora


	Phytophthora pseudosyringae


	Phytophthora ramorum


	Phytophthora syringae




Quoting from the sample summary report, using the
default settings for classification of DNA15MIX, we got:

$ grep DNA15MIX summary/thapbi-pict.ITS1.samples.onebp.tsv | cut -f 2
Phytophthora aleatoria(*), Phytophthora alpina(*), Phytophthora austrocedri, Phytophthora cactorum(*), Phytophthora gonapodyides, Phytophthora ilicis, Phytophthora kernoviae, Phytophthora obscura, Phytophthora pseudosyringae, Phytophthora ramorum





Or, as a list:


	Phytophthora aleatoria (uncertain/ambiguous)


	Phytophthora alpina (uncertain/ambiguous)


	Phytophthora austrocedri


	Phytophthora cactorum (uncertain/ambiguous)


	Phytophthora gonapodyides


	Phytophthora ilicis


	Phytophthora kernoviae


	Phytophthora obscura


	Phytophthora pseudosyringae


	Phytophthora ramorum




The good news is that eight are correct classifications (eight true
positives, 8 TP), but two false positives (2 FP). Those false positives
Phytophthora alpina and P. aleatoria are indistinguishable from
P. cactorum, a problem flagged via the conflicts command:

$ thapbi_pict conflicts | grep cactorum
f27df8e8755049e831b1ea4521ad6eb3  species  Phytophthora aleatoria;Phytophthora alpina;Phytophthora cactorum
$ grep f27df8e8755049e831b1ea4521ad6eb3 intermediate/ITS1/DNA15MIX.fasta
>f27df8e8755049e831b1ea4521ad6eb3_981





The bad news is we are missing seven expected species (seven false negatives,
7 FN):


	Phytophthora boehmeriae


	Phytophthora chlamydospora


	Phytophthora cinnamomi


	Phytophthora lateralis


	Phytophthora plurivora


	Phytophthora syringae


	Phytophthora x cambivora




We will return to interpretation after showing how to get the tool to compute
these FP, FP and FN values.

The positive controls from the second plate had a different mix of ten
Phytophthora species, again listed alphabetically:


	Phytophthora boehmeriae


	Phytophthora cactorum


	Phytophthora capsici


	Phytophthora castaneae


	Phytophthora fallax


	Phytophthora foliorum


	Phytophthora obscura


	Phytophthora plurivora


	Phytophthora rubi


	Phytophthora siskiyouensis




Again referring to the sample summary report from running with default settings,
for DNA10MIX_undiluted and DNA10MIX_diluted25x we got:


	Phytophthora agathidicida (uncertain/ambiguous)


	Phytophthora capsici


	Phytophthora castaneae (uncertain/ambiguous)


	Phytophthora fallax


	Phytophthora foliorum


	Phytophthora gloveri (uncertain/ambiguous)


	Phytophthora obscura


	Phytophthora plurivora


	Phytophthora rubi


	Phytophthora siskiyouensis




Plus the results from DNA10MIX_bycopynumber were almost the same - but this
time there wasn’t a sequence only matched to P. capsici, so that was also
flagged as “(uncertain/ambiguous)”.

Leaving aside the ambiguous qualifier, there are ten species predictions, but
only nine are correct (9 TP: P. capsici, P. castaneae, P. fallax,
P. foliorum, P. obscura, P. plurivora, P. rubi, P. siskiyouensis),
with two wrong guesses (2 FP: P. agathidicida and P. gloveri), and two
missing predictions (2 FN: P. boehmeriae and P. cactorum).

The uncertain/ambiguous prediction of Phytophthora agathidicida is easily
explained, it comes from a sequence present in all three samples with MD5
checksum 5122dde24762f8e3d6a54e3f79077254, and this exact sequence is in
the database with entries for both Phytophthora castaneae (which was in the
DNA control mixture) and also Phytophthora agathidicida (e.g. accession
KP295308).

You can confirm this by looking at the sample tally TSV files, e.g. using
grep to find the unique sequence matched to this species, and the sample
counts for that sequence:

$ grep "Phytophthora agathidicida" summary/thapbi-pict.ITS1.onebp.tsv | cut -f 1,125,126
ITS1/29de890989becddc5e0b10ecbbc11b1a_1524  1642459;1642465  Phytophthora agathidicida;Phytophthora castaneae
$ grep -E "(Sequence|29de890989becddc5e0b10ecbbc11b1a)" \
  summary/thapbi-pict.ITS1.tally.tsv | cut -f 2-5
DNA10MIX_bycopynumber  DNA10MIX_diluted25x  DNA10MIX_undiluted  DNA15MIX
245                    655                  624                 0
$ thapbi_pict conflicts | grep 29de890989becddc5e0b10ecbbc11b1a
29de890989becddc5e0b10ecbbc11b1a  species  Phytophthora agathidicida;Phytophthora castaneae





The same applies to Phytophthora capsici and Phytophthora gloveri.
i.e. These false positives are unavoidable.

As noted above, the woody hosts paper concluded the failure to detect
P. boehmeriae in either DNA mix was due to inefficient primer annealing
in a species mixture. We have an unexpected FN for P. cactorum though.



Running thapbi_pict assess for one sample

Comparing a few samples like this by hand is one thing, but doing it at scale
requires automation. For assessing changes to the classifier method and
database, we mainly run thapbi_pict assess against a set of single isolate
positive controls. This requires a computer readable files listing the
expected species in a particular format.

$ thapbi_pict assess -h
...





The “known” file uses the same column based layout as the intermediate TSV
files, but while you can provide the expected species for each unique sequence
in the sample, this can be simplified to a single wildcard * line
followed by all the NCBI taxids (optional), and species names using semi-colon
separators.

The simplest way to run the assess command is to tell it two TSV input
filenames, named <sample_name>.known.tsv (the expected results) and
<sample_name>.<method>.tsv (from running thapbi_pict classify` on
<sample_name>.fasta). However, although early versions of the pipeline
did this, it has for a long time combined the samples for classification -
partly for speed.

Instead we typically pass the assess command the sample-tally TSV file listing
how many of each unique sequence were found in each sample, the classifier TSV
listing the species assigned to each sequence, and one or more per-sample
<sample_name>.known.tsv expected results files.

The assess command will default to printing its tabular output to screen -
shown here abridged after piping through the cut command to pull out just
the first five columns from the 15 species mix:

$ thapbi_pict assess -i summary/thapbi-pict.ITS1.onebp.tsv \
  expected/DNA15MIX.known.tsv | cut -f 1-5
Assessed onebp vs known in 2 files (260 species; 1 samples)
#Species                     TP  FP  FN  TN
OVERALL                      8   2   7   243
Phytophthora aleatoria       0   1   0   0
Phytophthora alpina          0   1   0   0
Phytophthora austrocedri     1   0   0   0
Phytophthora boehmeriae      0   0   1   0
Phytophthora cactorum        1   0   0   0
Phytophthora chlamydospora   0   0   1   0
Phytophthora cinnamomi       0   0   1   0
Phytophthora gonapodyides    1   0   0   0
Phytophthora ilicis          1   0   0   0
Phytophthora kernoviae       1   0   0   0
Phytophthora lateralis       0   0   1   0
Phytophthora obscura         1   0   0   0
Phytophthora plurivora       0   0   1   0
Phytophthora pseudosyringae  1   0   0   0
Phytophthora ramorum         1   0   0   0
Phytophthora syringae        0   0   1   0
Phytophthora x cambivora     0   0   1   0
OTHER 243 SPECIES IN DB      0   0   0   243





More usually, you would output to a named file, and look at that:

$ thapbi_pict assess -i summary/thapbi-pict.ITS1.onebp.tsv \
  expected/DNA15MIX.known.tsv -o DNA15MIX.assess.tsv
Assessed onebp vs known in 2 files (260 species; 1 samples)
$ cut -f 1-5,9,11 DNA15MIX.assess.tsv
<SEE TABLE BELOW>





You should be able to open this DNA15MIX.assess.tsv file in R, Excel, etc,
and focus on the same column selection:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	8

	2

	7

	243

	0.64

	0.529



	Phytophthora aleatoria

	0

	1

	0

	0

	0.00

	1.000



	Phytophthora alpina

	0

	1

	0

	0

	0.00

	1.000



	Phytophthora austrocedri

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora boehmeriae

	0

	0

	1

	0

	0.00

	1.000



	Phytophthora cactorum

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora chlamydospora

	0

	0

	1

	0

	0.00

	1.000



	Phytophthora cinnamomi

	0

	0

	1

	0

	0.00

	1.000



	Phytophthora gonapodyides

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora ilicis

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora kernoviae

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora lateralis

	0

	0

	1

	0

	0.00

	1.000



	Phytophthora obscura

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora plurivora

	0

	0

	1

	0

	0.00

	1.000



	Phytophthora pseudosyringae

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora ramorum

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora syringae

	0

	0

	1

	0

	0.00

	1.000



	Phytophthora x cambivora

	0

	0

	1

	0

	0.00

	1.000



	OTHER 243 SPECIES IN DB

	0

	0

	0

	243

	0.00

	0.000






The OVERALL line tells us that there were 8 true positives, 2 false
positives, 7 false negatives, and 226 true negatives. The final number needs a
little explanation. First, 8+2+7+226 = 243, which is the number of species in
the database. With only one sample being considered, 226 is the number of
other species in the database which the tool correctly says are not present.

Following this we get one line per species, considering this species in
isolation (making this a traditional and simpler to interpret classification
problem). Here there is only one sample, so this time TP+FP+FN+TN=1.

You can easily spot the 2 FP in this layout, Phytophthora alpina and
P. aleatoria, or the 7 FN.

The additional columns (not all shown here) include traditional metrics like
sensitivity, specificity, precision, F1, and Hamming loss. We’ve shown F1 or
F-measure here (from zero to one for perfect recall), plus our own metric
provisionally called Ad hoc loss which is a modification of the Hamming loss
without using the true negative count (which we expect to always be very large
as the database will contain many species, while a community might contain
only ten).

Doing that for one of the 10 species mixtures:

$ thapbi_pict assess -i summary/thapbi-pict.ITS1.onebp.tsv \
  expected/DNA10MIX_undiluted.known.tsv -o DNA10MIX.assess.tsv
Assessed onebp vs known in 2 files (260 species; 1 samples)
$ cut -f 1-5,9,11 DNA10MIX.assess.tsv
<SEE TABLE BELOW>





As this is still only one sample, new table DNA10MIX.assess.tsv is very
similar to what we had before:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	8

	2

	2

	248

	0.80

	0.333



	Phytophthora agathidicida

	0

	1

	0

	0

	0.00

	1.000



	Phytophthora boehmeriae

	0

	0

	1

	0

	0.00

	1.000



	Phytophthora cactorum

	0

	0

	1

	0

	0.00

	1.000



	Phytophthora capsici

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora castaneae

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora fallax

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora foliorum

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora gloveri

	0

	1

	0

	0

	0.00

	1.000



	Phytophthora obscura

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora plurivora

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora rubi

	1

	0

	0

	0

	1.00

	0.000



	Phytophthora siskiyouensis

	1

	0

	0

	0

	1.00

	0.000



	OTHER 248 SPECIES IN DB

	0

	0

	0

	248

	0.00

	0.000






It is clear from the metrics that the classifier is performing better on the
second 10 species mock community.



Assessing multiple samples

Next, let’s run the assess command on all four positive control samples, by
giving the combined intermediate filenames, and all the expected files:

$ thapbi_pict assess -i summary/thapbi-pict.ITS1.onebp.tsv \
  expected/ -o thabpi-pict.ITS1.assess.tsv
Assessed onebp vs known in 5 files (260 species; 4 samples)
$ cut -f 1-5,9,11 thabpi-pict.ITS1.assess.tsv
<SEE TABLE BELOW>





New table thabpi-pict.ITS1.assess.tsv is similar, but notice all the
per-species lines have TP+FP+FN+TN=4 as there were 4 samples:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	32

	8

	13

	987

	0.75

	0.396



	Phytophthora agathidicida

	0

	3

	0

	1

	0.00

	1.000



	Phytophthora aleatoria

	0

	1

	0

	3

	0.00

	1.000



	Phytophthora alpina

	0

	1

	0

	3

	0.00

	1.000



	Phytophthora austrocedri

	1

	0

	0

	3

	1.00

	0.000



	Phytophthora boehmeriae

	0

	0

	4

	0

	0.00

	1.000



	Phytophthora cactorum

	1

	0

	3

	0

	0.40

	0.750



	Phytophthora capsici

	3

	0

	0

	1

	1.00

	0.000



	Phytophthora castaneae

	3

	0

	0

	1

	1.00

	0.000



	Phytophthora chlamydospora

	0

	0

	1

	3

	0.00

	1.000



	Phytophthora cinnamomi

	0

	0

	1

	3

	0.00

	1.000



	Phytophthora fallax

	3

	0

	0

	1

	1.00

	0.000



	Phytophthora foliorum

	3

	0

	0

	1

	1.00

	0.000



	Phytophthora gloveri

	0

	3

	0

	1

	0.00

	1.000



	Phytophthora gonapodyides

	1

	0

	0

	3

	1.00

	0.000



	Phytophthora ilicis

	1

	0

	0

	3

	1.00

	0.000



	Phytophthora kernoviae

	1

	0

	0

	3

	1.00

	0.000



	Phytophthora lateralis

	0

	0

	1

	3

	0.00

	1.000



	Phytophthora obscura

	4

	0

	0

	0

	1.00

	0.000



	Phytophthora plurivora

	3

	0

	1

	0

	0.86

	0.250



	Phytophthora pseudosyringae

	1

	0

	0

	3

	1.00

	0.000



	Phytophthora ramorum

	1

	0

	0

	3

	1.00

	0.000



	Phytophthora rubi

	3

	0

	0

	1

	1.00

	0.000



	Phytophthora siskiyouensis

	3

	0

	0

	1

	1.00

	0.000



	Phytophthora syringae

	0

	0

	1

	3

	0.00

	1.000



	Phytophthora x cambivora

	0

	0

	1

	3

	0.00

	1.000



	OTHER 235 SPECIES IN DB

	0

	0

	0

	940

	0.00

	0.000






This time the OVERALL line says we had 32 TP, 8 FP, 13 FN and 827 TN.
Their total, 32+8+13+927 = 980 = 4 * 245, is the number of samples times the
number of species in the database.



Running assessment as part of pipeline

Provided they follow the expected naming convention, if you include your
control files *.known.tsv as one of the pipeline inputs, it will call the
classifier assessment after running the classifier and producing the main
reports:

$ thapbi_pict pipeline -i raw_data/ expected/ -s intermediate/ \
  -o summary/with-metadata -n raw_data/NEGATIVE*.fastq.gz \
  -t metadata.tsv -c 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 -x 16
...
$ ls -1 summary/with-metadata.*
summary/with-metadata.ITS1.assess.confusion.onebp.tsv
summary/with-metadata.ITS1.assess.onebp.tsv
summary/with-metadata.ITS1.assess.tally.onebp.tsv
summary/with-metadata.ITS1.onebp.tsv
summary/with-metadata.ITS1.reads.onebp.tsv
summary/with-metadata.ITS1.reads.onebp.xlsx
summary/with-metadata.ITS1.samples.onebp.tsv
summary/with-metadata.ITS1.samples.onebp.xlsx
summary/with-metadata.ITS1.tally.tsv
$ diff summary/with-metadata.ITS1.assess.onebp.tsv \
  thabpi-pict.ITS1.assess.tsv





Output file summary/with-metadata.ITS1.assess.onebp.tsv will match the
output above.



Interpretation of the mock communities

Running our pipeline with the default settings results in a number of false
positives (all unavoidable as they come from conflicting marker sequences in
the database, see the thapbi_pict conflicts command), and some false
negatives (on top of the explained absence of Phytophthora boehmeriae).
Specifically we have 6 unexplained false negatives on the 15 species mix, and
are missing Phytophthora cactorum in all three samples of the 10 species mix.

This means that with the default settings THAPBI PICT gives a more cautious
set of predictions than the metapy tool used in the original data analysis
(see Riddell et al. (2019) Table 1, Table 2 [https://doi.org/10.7717/peerj.6931/table-1]) which appears to consider even
singletons.

Attempting to compare the results in their Table 1 with our own numbers is
complicated since it appears to show just one of the 10 species mixes (so the
TP count is out of 10) while we used all three (for a TP count out of 30).

We can therefore pick a single representative sample for the 10 species mix,
to make direct comparison more straight forward:

$ thapbi_pict assess -i summary/thapbi-pict.ITS1.onebp.tsv \
  expected/DNA15MIX.known.tsv expected/DNA10MIX_undiluted.known.tsv \
  | head -n 2 | cut -f 1-5,9,11
Assessed onebp vs known in 3 files (260 species; 2 samples)
#Species  TP  FP  FN  TN   F1    Ad-hoc-loss
OVERALL   16  4   9   491  0.71  0.448





We can recover most of the missing species (the FN) by dropping the minimum
abundance thresholds (which requires deleting the intermediate FASTA files,
or using a different intermediate folder, and re-running with lower settings
for -a and -f), at the cost of more FP.

For instance, we find traces of P. syringae with less than 10 reads in
the 15 species mix (consistent with Table 2), and even P. boehmeriae with
less than 10 reads in two of the 10 species mix (not reported in Table 2).

Interestingly even excluding only singletons (using -a 2 -f 0), we didn’t
find any matches to Phytophthora cactorum in the three samples of the 10
species mix. However, there is a sequence perfectly matching database entries
for P. idaei present at around 40 to 60 copies, and in light of the original
paper, this is likely what was intended to be in the mixture as P. cactorum.

Again even excluding only singletons, we didn’t find any matches to
P. plurivora in the 15 species mix (Table 2 in the original paper suggests
present with only 2 reads).

We can optimise the threshold by maximising the F1 score and minimising
ad-hoc-loss for these two samples. This is done at the end of the run.sh
script with a simple parameter sweep of the absolute threshold (-a)
with the fractional threshold unused (-f 0). This produces a simple table:

$ cut -f 1-5,9,11 summary/mocks_a2.assess-vs-abundance.tsv
<SEE TABLE BELOW>





Open the table in Excel if you prefer, the columns of particular interest:



	#Threshold

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	A=2

	22

	17

	3

	478

	0.69

	0.476



	A=10

	20

	9

	5

	486

	0.74

	0.412



	A=20

	20

	8

	5

	487

	0.75

	0.394



	A=30

	19

	8

	6

	487

	0.73

	0.424



	A=40

	19

	6

	6

	489

	0.76

	0.387



	A=50

	19

	5

	6

	490

	0.78

	0.367



	A=60

	18

	5

	7

	490

	0.75

	0.400



	A=70

	18

	5

	7

	490

	0.75

	0.400



	A=80

	18

	5

	7

	490

	0.75

	0.400



	A=90

	16

	4

	9

	491

	0.71

	0.448



	A=100

	16

	4

	9

	491

	0.71

	0.448






This suggests the optimal absolute abundance threshold for these two samples
is in the region of 50 reads, giving 19 TP, 5 FP, and 6 FN for an F1 of 0.78
and ad-hoc-loss of 0.367. If we run the optimisation on all four samples (one
with 15 species, three with 10 species), this suggests somewhere in between
this and the default of 100.





            

          

      

      

    

  

    
      
          
            
  
Environmental Oomycetes ITS1

The first worked example looked at Phytophthora ITS1
data from woody-host trees, using the same PCR primers as the THAPBI PICT
defaults, and the default database of Phytophthora ITS1 data provided.

Here we re-analyse a published dataset from a different group, doing Illumina
MiSeq ITS1 amplicon sequencing of irrigation water samples from Oregon:


Redekar et al. (2019) Diversity of Phytophthora, Pythium, and
Phytopythium species in recycled irrigation water in a container nursery.
https://doi.org/10.1094/PBIOMES-10-18-0043-R




Different PCR primers were used to cover Pythium and Phytopythium as well
as Phytophthora. This requires a new database of markers.



	Marker data

	Pipeline with defaults

	Different primers

	Building a custom database

	Specifying custom primers

	Examining the database

	Pipeline with custom database








            

          

      

      

    

  

    
      
          
            
  
Marker data

Either clone the THAPBI PICT source code repository, or decompress the
latest source code release (.tar.gz file). You should find it contains
a directory examples/recycled_water/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis
discussed.

The documentation goes through running each step of the analysis gradually,
including building a custom database, before finally calling pipeline command
to do it all together. We provide script run.sh to do the final run-though
automatically, but encourage you to follow along the individual steps first.


FASTQ data

File PRJNA417859.tsv was download from the ENA and includes the FASTQ
checksums, URLs, and sample metadata. With a little scripting to extract the
relevant sample metadata for use with THAPBI PICT this was
reformatted as metadata.tsv (see below).

Script setup.sh will download the raw FASTQ files for Redekar et al.
(2019) from https://www.ebi.ac.uk/ena/data/view/PRJNA417859 - you could also
use https://www.ncbi.nlm.nih.gov/bioproject/PRJNA417859/

It will download 768 raw FASTQ files (384 pairs), taking about 4.8GB on disk

If you have the md5sum tool installed (standard on Linux; we suggest
conda install coreutils to install this on macOS), verify the FASTQ files
downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
...
$ cd ..





There is no need to decompress the files.



Amplicon primers & reference sequences

A region of ITS1 was amplified using the ITS6/ITS7 primer pair
(GAAGGTGAAGTCGTAACAAGG and AGCGTTCTTCATCGATGTGC) which bind the
5.8S rDNA, described here:


Cooke et al. (2000) A molecular phylogeny of Phytophthora and related
oomycetes. https://doi.org/10.1006/fgbi.2000.1202




The left primer (ITS6) matches the THAPBI PICT default, but their right primer
(ITS7) matches about 60bp further downstream in Phytophthora. This means we
can use THAPBI PICT default settings and get meaningful but blinkered results
(for the subset of the data which our narrower primer set would have amplified,
using a Phytophthora centric database).

In order to classify beyond Phytophthora, we need to build a THABPI PICT
database including Pythium and Phytopythium. Redekar et al. (2019)
Supplementary Table 3 provides a list of 1454 unique accessions and the
species they assigned to it (not always the same as that listed on the NCBI
record, as those annotations can change). Looking at those sequences, bar
a handful they extend though the right primer. However, only about 50 have
the left primer sequence included (depending how stringent you are), and
the rest are also missing the next 32bp.

The ITS6 primer is situated within a highly conserved region, and the next
32bp is highly conserved, usually TTTCCGTAGGTGAACCTGCGGAAGGATCATTA.
Unfortunately, the majority of published Oomycetes ITS1 sequences omit
this. For the curated Phytophthora in the THAPBI PICT default database,
we have inserted the expected sequence - and have yet to find a counter
example. However, Redekar et al. (2019) took the other obvious choice, and
remove it from their reads:


trimming extra bases from read1: an additional 32 bases from the 5′ end
of read1, which mapped to 18S segment, were trimmed as the oomycete ITS
reference database does not include the 18S segment;




We can do something similar in THAPBI PICT by treating this typically
conserved 32bp region as part of the left primer - requiring it be present
(while allowing some ambiguity) and removing it - leaving a shorter fragment
which can be matched to a database built of those 1454 accessions.



Metadata

The provided file metadata.tsv has seven columns:


	Source, “Reservoir”, “River” or “Runoff”


	Site,  “A”, “B”, “C”, …, “M”


	Process, “Filtration” or “Leaf baiting”


	Period, “01” to “28”


	Year-Month, “2015-04” to “2016-05” (given as “YYYY-MM” for sorting)


	Sample, author’s sample name, e.g. “OSU484”


	Accession, assigned by the public archive, e.g. “SRR6303585”




When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 7 -c 1,2,3,4,5,6





Argument -t metadata.tsv says to use this file for the metadata.

The -x 7 argument indicates the filename stem can be found in column 7,
Accession.

Argument -c 1,2,3,4,5,6 says which columns to display and sort by (do
not include the indexed column again). If for example the accession was
listed first, it would be sorted on that, which is not helpful here. If you
prefer to sort on site first, or by date before process, this should be
straightforward.

We have not given a -g argument to assign colour bands in the Excel
reports, so it will default to the first column in -c, meaning we get
three coloured bands for “Reservoir”, “River” and “Runoff”.



Other files

Files Redekar_et_al_2019_sup_table_3.tsv (plain text tab separated table)
and Redekar_et_al_2019_sup_table_3.fasta (FASTA format) are based on the
Excel format Supplementary Table 3 from the paper.





            

          

      

      

    

  

    
      
          
            
  
Pipeline with defaults


Running thapbi-pict pipeline

First, we will run the THAPBI PICT pipeline command with largely default
settings (including the default database and primers), other than including
the metadata about the water samples. Note that this dataset has no blanks or
negative controls, so we must trust the default minimum abundance threshold.

The key values which we will be changing later are the primers and database.

Assuming you have the FASTQ files in raw_data/, run the pipeline command
as follows, and you should get the listed output report files:

$ mkdir -p intermediate_defaults/ summary/
$ thapbi_pict pipeline \
  -i raw_data/ -o summary/recycled-water-defaults \
  -s intermediate_defaults/ \
  -t metadata.tsv -x 7 -c 1,2,3,4,5,6
...
onebp classifier assigned species/genus to 436 of 794 unique sequences from 1 files
Wrote summary/recycled-water-defaults.ITS1.samples.onebp.*
Wrote summary/recycled-water-defaults.ITS1.reads.onebp.*
...
$ ls -1 summary/recycled-water-defaults.*
summary/recycled-water-defaults.ITS1.onebp.tsv
summary/recycled-water-defaults.ITS1.reads.onebp.tsv
summary/recycled-water-defaults.ITS1.reads.onebp.xlsx
summary/recycled-water-defaults.ITS1.samples.onebp.tsv
summary/recycled-water-defaults.ITS1.samples.onebp.xlsx
summary/recycled-water-defaults.ITS1.tally.tsv





Here we used -r (or --report) to specify a different stem for the
report filenames. The sample metadata options were described
earlier – this is perhaps an idealised example in that metadata.tsv was
created so that we add the first six columns the table (sorted in that order),
where -x 7 means index to the accession (filename prefix) in column seven.

Notice the output reported a taxonomic assignment for 431 of 794 unique
sequences - that’s 54%, but considerably higher if we consider the reads.



Results

We will compare and contrast the following four samples with the second run
using different primers and a custom database. These were deliberately picked
from the less diverse samples for clarity.

Here we pick out the four samples at the command line with grep, you
can also look at the recycled-water-defaults.ITS1.samples.onebp.xlsx
file in Excel:

$ cut -f 6,7,8 summary/recycled-water-defaults.ITS1.samples.onebp.tsv \
  | grep -E "(SRR6303586|SRR6303586|SRR6303588|SRR6303596|SRR6303948)"
OSU482       SRR6303588  Phytophthora chlamydospora, Phytophthora x stagnum(*), Unknown
OSU483       SRR6303586  Phytophthora chlamydospora, Phytophthora x stagnum(*)
OSU536.s203  SRR6303948  Phytophthora ramorum
OSU121       SRR6303596  Phytopythium (unknown species)





Three of these four have Phytophthora (and one with an unknown), while
the fourth has Phytopythium. However, this is discarding all the reads
which do not match the default Phytophthora centric primers.





            

          

      

      

    

  

    
      
          
            
  
Different primers

This example is based on the following paper from another research group:


	Redekar et al. (2019) Diversity of Phytophthora, Pythium, and
Phytopythium species in recycled irrigation water in a container nursery.
https://doi.org/10.1094/PBIOMES-10-18-0043-R




The worked example starts by running the pipeline command with default
settings, which uses the default Phytophthora
centric database and primers. We can do that because the tool’s default
database defines primers which target a subset of the longer amplicon
amplified in this example dataset.

Now we will change the primer settings. Using the actual right primer will
extend the Phytophthora FASTA sequences about 60bp (and accept many more
non-Phytophthora). The left primer is actually the same, but to match the
analysis and references from Redekar et al. (2019), we want to trim off the
typically conserved 32bp fragment TTTCCGTAGGTGAACCTGCGGAAGGATCATTA from
the start of each amplicon, which we can do by pretending this is part of the
left primer.

The up-shot is by cropping about 32bp off the start, and adding about 60bp
at the end, we will no longer get any matches against the default database
with the default classifier (it is too strict, the matches are too distant).

This means before we can run the entire pipeline, we will need to build a
custom database. We’ll discuss the sequences which go into this database
next, but this use --marker ITS1-long to name this alternative marker,
and set --left GAAGGTGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTA
and --right AGCGTTCTTCATCGATGTGC to declare the primers.



Building a custom database

We will build a database using the same public sequences as Redekar et al.
(2019), using the accessions given in Supplementary Table 3 in Excel format.

We have taken their list of accessions and species names (ignoring voucher or
isolate numbers), edited some punctuation to match the NCBI taxonomy, added
some missing accession version suffixes, deduplicated, and made a simple
tab-separated plain text table, with 1454 entries. In the setup instructions
for this example you should have got a copy of this file, named
Redekar_et_al_2019_sup_table_3.tsv, and a matching FASTA file
Redekar_et_al_2019_sup_table_3.fasta which we will import into the new
database.

This table is sorted alphabetically by species then accession, and starts:

$ head Redekar_et_al_2019_sup_table_3.tsv
<SEE TABLE EXCERPT BELOW>





You could also look at the TSV file in Excel:



	HQ643082.1

	Achlya ambisexualis



	HQ643083.1

	Achlya ambisexualis



	HQ643084.1

	Achlya americana



	HQ643085.1

	Achlya aquatica



	HQ643086.1

	Achlya bisexualis



	HQ643087.1

	Achlya bisexualis



	HQ643088.1

	Achlya bisexualis



	HQ643089.1

	Achlya caroliniana



	HQ643090.1

	Achlya colorata



	HQ643091.1

	Achlya colorata







Determining the species

Consider FJ666127.1 which Redekar et al. (2019) listed as Phytophthora
aquimorbida - yet at the time of writing, the file downloaded from
https://www.ebi.ac.uk/ena/browser/api/fasta/FJ666127.1 is as follows, with
a species name of Phytophthora sp. CCH-2009b:

>ENA|FJ666127|FJ666127.1 Phytophthora sp. CCH-2009b isolate 40A6 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence.
CCACACCTAAAAACTTTCCACGTGAACTGTCTGTGATGTTGGGGGGCTGCTGCTGCTGCT
TCGGTGGCGGCGTGCTCCCATCAAACGAGGCCCTGGGCTGCAAAGTCGGGGGTAGTAGTT
ACTTTTTGTAAACCCTTTTCCTGTATTTTCTGAATATACTGGGGGGACGAAAGTCTCTGC
TTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTCGCACATCGATGAAGAACG
CTGCGAACTGCGATACGTAATGCGAATTGCAGGATTCAGTGAGTCATCGAAATTTTGAAC
GCATATTGCACTTCCGGGTTATGCCTGGGAGTATGCCTGTATCAGTGTCCGTACATCAAT
CTTGGCTTCCTTCCTTCCGTGTAGTCGGTGGCGGGAACGCGCAGACGTGAAGTGTCTTGC
CTGTGGCTCCAGCTGTTGTTGGGGTGGTGTGGGCGAGTCCTTTGAAATGTAAGATACTGT
TCTTCTCTTTGCTGGAAAAGCGTGCGCTGTGTGGTTGTGGAGGCTGCCGTGGTGGCCAGT
CGGCGACTGACTTCGTGCTGATGCGTGTGGAGAGGCTCTGGATTCGCGGTATGGTTGGCT
TCGGCTGAACTTCTGCTTATTTGGGTGTCTTTTCGCTGCGTTGGCGTGTCGGGGTTGGTG
AACCGTAGTCATTTCGGCTTGGCTTTTGAACCGCGTGGCTGTAGCGCGAAGTATGGCGGC
TGCCTTTGTGGCGGCCGAGAGGACGACCTATTTGGGACGATTGTGCGGCCTCGTGCTGCA
TCTCAA





Notice that the species name runs into the general description, which
is problematic. Unless THAPBI PICT has a pre-loaded taxonomy to use
for validation, it has to use heuristics to split up this long string -
which is not fully reliable.

If we look at https://www.ncbi.nlm.nih.gov/nucleotide/FJ666127.1 on the
NCBI website, we see it in GenBank format which is a little different:

LOCUS       FJ666127                 786 bp    DNA     linear   PLN 09-MAR-2009
DEFINITION  Phytophthora sp. CCH-2009b isolate 40A6 internal transcribed spacer
            1, partial sequence; 5.8S ribosomal RNA gene, complete sequence;
            and internal transcribed spacer 2, partial sequence.
ACCESSION   FJ666127
VERSION     FJ666127.1
KEYWORDS    .
SOURCE      Phytophthora aquimorbida
  ORGANISM  Phytophthora aquimorbida
            Eukaryota; Stramenopiles; Oomycetes; Peronosporales;
            Peronosporaceae; Phytophthora.
...





The NCBI metadata has the species Phytophthora aquimorbida separate
from the author submitted description which starts with an older name,
“Phytophthora sp. CCH-2009b” - which is in fact listed as an alias on
the NCBI taxonomy database under taxonomy ID 611798 [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=611798].

THAPBI PICT offers two solutions. By default the entire FASTA description
(after the identifier) is the species name, giving full control to the user.

However, -c ncbi switches on NCBI heuristics. This is best used with a
pre-loaded NCBI taxonomy in the database for validation purposes. This tries
as many words as possible from the NCBI style FASTA description in looking for
a match in the NCBI taxonomy, including synonyms. If that fails and lax mode
is used (-x or --lax), it falls back on heuristics to identify which
part of the description is the species.



Species validation

THAPBI PICT by default validates imports against the NCBI taxonomy, and
that includes support for known synonyms. This requires downloading the
taxonomy files and running the thapbi-pict load-tax command.

The NCBI currently provide their taxonomy dump in two formats, old and new.
THAPBI PICT supports both, we’ll use the old format as the download is half
the size - we only need the names.dmp, nodes.dmp and merged.dmp
files:

$ curl -L -O https://ftp.ncbi.nih.gov/pub/taxonomy/taxdump_archive/taxdmp_2019-12-01.zip
...
$ unzip -n -d taxdmp_2019-12-01 taxdmp_2019-12-01.zip
...
$ ls -1 taxdmp_2019-12-01/*.dmp
taxdmp_2019-12-01/citations.dmp
taxdmp_2019-12-01/delnodes.dmp
taxdmp_2019-12-01/division.dmp
taxdmp_2019-12-01/gencode.dmp
taxdmp_2019-12-01/merged.dmp
taxdmp_2019-12-01/names.dmp
taxdmp_2019-12-01/nodes.dmp





Building the database becomes a two-step process, first importing the
taxonomy, and second importing the sequences.

If you are working with different organisms you will also need to set the
-a or --ancestors option which defaults to NCBI taxonomy ID 4762 [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=4762] for
Oomycetes.



Primer trimming

We have provided file Redekar_et_al_2019_sup_table_3.fasta which contains
primer trimmed versions of the full sequences of each accession, plus the
species name from Redekar_et_al_2019_sup_table_3.tsv which was based on
those given in Redekar et al. (2019) Supplementary Table 3 but with some
light curation to better match the NCBI usage. Note that matching sequences
have been combined into single FASTA records with a semi-colon separated
description.

The sequencing trimming ought to be very close to that used in the Redekar
et al. (2019) paper’s database. This file was constructed with a short Python
script parsing the information in Redekar_et_al_2019_sup_table_3.tsv and
the downloaded full sequences.
Then cutadapt -g GAAGGTGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTA ...
found and removed 64 left prefixes. This was followed by running
cutadapt -a GCACATCGATGAAGAACGCT ... which trimmed 1439 sequences (99.9%)
and warned that the “adapter” might be incomplete because the sequence
preceding it was highly conserved. That left 1451 sequences, but with many
duplicates. This was made non-redundant giving 841 unique sequences with
de-duplicated entries recorded with semi-colon separated FASTA title lines.

Now, let’s load the FASTA file into a new THAPBI PICT database with the NCBI
taxonomy pre-loaded (which will enable synonym support), but not enforced
(-x or --lax mode). We’ll name the new marker “ITS1-long” and record
the left and right primers which will be used later when processing the reads:

$ rm -rf Redekar_et_al_2019_sup_table_3.sqlite  # remove it if already there
$ thapbi_pict load-tax -d Redekar_et_al_2019_sup_table_3.sqlite -t taxdmp_2019-12-01/
...
$ thapbi_pict import -d Redekar_et_al_2019_sup_table_3.sqlite \
  --lax --sep ";" -i Redekar_et_al_2019_sup_table_3.fasta \
  --left GAAGGTGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTA \
  --right AGCGTTCTTCATCGATGTGC --marker ITS1-long
File Redekar_et_al_2019_sup_table_3.fasta had 841 sequences, of which 838 accepted.
Of 1451 potential entries, loaded 1451 entries, 0 failed parsing.





Just a few short sequences were rejected - giving in total 1451 entries.
The vast majority are recorded with an NCBI taxid, just four exceptions
(visible if you run the last command with -v or --verbose):


	Phytophthora taxon aquatilis from
FJ666126.1 [https://www.ncbi.nlm.nih.gov/nucleotide/FJ666126.1],
which the NCBI say should be Phytophthora sp. CCH-2009a


	Phytophthora fragaefolia from
AB305065.1 [https://www.ncbi.nlm.nih.gov/nucleotide/AB305065.1],
which the NCBI say should be Phytophthora fragariaefolia.


	Phytophthora citricola sensu stricto from
FJ560913.1 [https://www.ncbi.nlm.nih.gov/nucleotide/FJ560913.1],
which the NCBI say should be just Phytophthora citricola.


	Phytopythium sp. amazonianum from
HQ261725.1 [https://www.ncbi.nlm.nih.gov/nucleotide/HQ261725.1],
which the NCBI say should be Pythium sp. ‘amazonianum’.




None of these are clear cut (there were a lot more conflicts, mostly down to
differences in punctuation, already addressed in preparing the TSV and FASTA
file).

If you left off the -x (or --lax) option, those four would not have
been imported into the database.



Taxonomic conflicts

The ITS1 region is not ideal as a barcode sequence.  In the Phytophthora
there are many cases where the same marker is shared by multiple species.
The thapbi_pict conflicts command is provided to check for this, or
worse – conflicts at genus level:

$ thapbi_pict conflicts -h
...





Let’s run this on the custom database, with output to a file:

$ thapbi_pict conflicts -d Redekar_et_al_2019_sup_table_3.sqlite -o conflicts.tsv; echo "(Return code $?)"
(Return code 3)





Command line tools use a non-zero return code by convention to indicate an
error. Here we return the number of genus level conflicts, three, as can be
seen by looking at the start of the plain text tab separated table output:

$ head -n 5 conflicts.tsv
#MD5                              Level    Conflicts
87e588784b04ba5f4538ff91acb50c0f  genus    Lagenidium;Pythium
9bb2ab5b9f88256516f2ae618c16a62e  genus    Brevilegnia;Globisporangium
ff35f216832110904cc6fd1c9def33fd  genus    Achlya;Saprolegnia
077ae505c0ad210aa4c071417a4f2f9a  species  Saprolegnia monilifera;Saprolegnia unispora





There are lots species level conflicts, some of which might be subspecies etc.
However, more concerning is three genus level conflicts.

One way to see which accessions are a problem is filtering the dump command
output (introduced properly in Examining the database), e.g.

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
  | cut -f 2-6 | grep 87e588784b04ba5f4538ff91acb50c0f
HQ643136.1  Lagenidium  caudatum   135481  87e588784b04ba5f4538ff91acb50c0f
HQ643539.1  Pythium     flevoense  289620  87e588784b04ba5f4538ff91acb50c0f
Wrote 1451 txt format entries





Some could be mislabelled, for 9bb2ab5b9f88256516f2ae618c16a62e we see
the vast majority are Globisporangium ultimum with just one sequence
HQ643127.1 [https://www.ncbi.nlm.nih.gov/nucleotide/HQ643127.1] labelled
as Brevilegnia gracilis:

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
  | cut -f 3-6 | grep 9bb2ab5b9f88256516f2ae618c16a62e \
  | sort | uniq -c | sed 's/^ *//g'
1 Brevilegnia       gracilis  944588   9bb2ab5b9f88256516f2ae618c16a62e
42 Globisporangium  ultimum   2052682  9bb2ab5b9f88256516f2ae618c16a62e





Checking the current NCBI annotation of these accessions does not suggest
problems with recent taxonomy changes like Phytopythium vs Pythium.

Those assignments might have changed since this was written. Taxonomy is
fluid, so if using any single authority, make sure to document which version
(e.g. month and year for the NCBI taxonomy).





            

          

      

      

    

  

    
      
          
            
  
Specifying custom primers


Running prepare-reads step

We first ran the pipeline command with default settings, if you skipped that we can do just the reads now:

$ mkdir -p intermediate_defaults/
$ thapbi_pict prepare-reads -i raw_data/ -o intermediate_defaults/
...
$ ls -1 intermediate_defaults/ITS1/SRR*.fasta | wc -l
384





We then created a database from the Redekar et al. (2019) reference
accessions with their primers. Now we can run the pipeline again with this,
which will start by applying the prepare-reads step to the FASTQ files in
raw_data/:

$ mkdir -p intermediate/
$ thapbi_pict prepare-reads -i raw_data/ -o intermediate_long/ \
  --db Redekar_et_al_2019_sup_table_3.sqlite
...
$ ls -1 intermediate_long/ITS1-long/SRR*.fasta | wc -l
384





Here the database says the left primer is GAAGGTGAAGTCGTAACAAGG (same as
the THAPBI PICT default) plus TTTCCGTAGGTGAACCTGCGGAAGGATCATTA (conserved
32bp region), and that the right primer is AGCGTTCTTCATCGATGTGC. This has
reverse complement GCACATCGATGAAGAACGCT and is found about 60bp downstream
of the default right primer in Phytophthora, and should also match Pythium
and Phytopythium species.

i.e. We should now find the Phytophthora FASTA sequences extracted are about
60 - 32 = 28bp longer, and many more non-Phytophthora are accepted.

Will now pick a couple of samples to compare and contrast with the first run.
For clarity these examples are deliberately from the less diverse samples.
The FASTA sequences have been line wrapped at 80bp for display.



Longer sequences

We will start with SRR6303586 aka OSU483, a leaf-baiting sample from
a reservoir. With the default primer trimming looking at the reads report, or
the simpler sally table, focusing on just the one sample and filtering out
non-zero counts:

$ tail -n +10 summary/recycled-water-defaults.ITS1.tally.tsv \
  | cut -f 3,386 | grep -v "^0"
<SEE TABLE BELOW>





You could instead select and filter on this column in Excel:



	SRR6303586

	Sequence





	35109

	TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACCCTTTCTTTAAATACTGAACATACT



	10271

	TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACTCTTTCTTTAAATACTGAACATACT



	580

	TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACCCTTTCTTTAAATACTGAACATACT



	157

	TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACTCTTTCTTTAAATACTGAACATACT






Four very similar sequences (differing in the length of the poly-A run, seven
is more common than six, and a C/T SNP towards the end), all matched to
Phytophthora chlamydospora with THAPBI PICT’s default settings.

With the new primer setting, which you can see listed at the start of the
header, we again get four sequences passing the abundance threshold:

$ tail -n +10 summary/recycled-water-custom.ITS1-long.tally.tsv \
  | cut -f 3,386 | grep -v "^0"
<SEE TABLE BELOW>





As before, you may prefer to open this as a spreadsheet:



	SRR6303586

	Sequence





	33451

	CCACACCTAAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACCCTTTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC



	9729

	CCACACCTAAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACTCTTTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC



	545

	CCACACCTAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACCCTTTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC



	143

	CCACACCTAAAAAACTTTCCACGTGAACCGTATCAACCCCTTAAATTTGGGGGCTTGCTCGGCGGCGTGCGTGCTGGCCTGTAATGGGTCGGCGTGCTGCTGCTGGGCAGGCTCTATCATGGGCGAGCGTTTGGGCTTCGGCTCGAACTAGTAGCTATCAATTTTAAACTCTTTCTTTAAATACTGAACATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC






Again four very similar sequences, each as before but with the starting
TTTCCGTAGGTGAACCTGCGGAAGGATCATTA removed, and instead extended by
GTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC.

The abundances are similar but slightly lower - there would have been some
minor variation in trimmed regions which would have been pooled, so with
less trimming we tend to get lower counts.

You can verify by NCBI BLAST online that the first and third (the
C form) give perfect full length matches to published Phytophthora
chlamydospora, while an exact match to the T forms has not been
published at the time of writing (yet this occurs at good abundance in many of
these samples).



Losing sequences

If you examine SRR6303588 you will see a similar example,
starting with five unique sequences (with one only just above the
default abundance threshold), dropping to four unique sequences.



Finding Pythium

Now for a more interesting example, SRR6303596 aka OSU121, another
leaf baiting sample but from runoff water. With the defaults (using grep
to omit the header):

$ tail -n +10 summary/recycled-water-defaults.ITS1.tally.tsv \
  | cut -f 13,386 | grep -v "^0"
<SEE TABLE BELOW>





As a table,



	SRR6303596

	Sequence





	953

	TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAATCTTTCCACGTGAATTGTTTTGCTGTACCTTTGGGCTTCGCCGTTGTCTTGTTCTTTTGTAAGAGAAAGGGGGAGGCGCGGTTGGAGGCCATCAGGGGTGTGTTCGTCGCGGTTTGTTTCTTTTGTTGGAACTTGCGCGCGGATGCGTCCTTTTGTCAACCCATTTTTTGAATGAAAAACTGATCATACT






There was a single sequence, with no matches (NCBI BLAST suggests this is
Phytopythium litorale). Now with the revised primer settings this sequence
is still present but only the second most abundant sequence:

$ tail -n +10 summary/recycled-water-custom.ITS1-long.tally.tsv \
  | cut -f 13,386 | grep -v "^0"
<SEE TABLE BELOW>





As a table, note this is sorted by global abundance:



	SRR6303596

	Sequence





	40503

	CCACACCAAAAAAACTTTCCACGTGAACCGTTGTAACTATGTTCTGTGCTCTCTTCTCGGAGAGAGCTGAACGAAGGTGGGCTGCTTAATTGTAGTCTGCCGATGTACTTTTAAACCCATTAAACTAATACTGAACTATACTCCGAAAACGAAAGTCTTTGGTTTTAATCAATAACAACTTTCAGCAGTGGATGTCTAGGCTC



	878

	CCACACCTAAAAATCTTTCCACGTGAATTGTTTTGCTGTACCTTTGGGCTTCGCCGTTGTCTTGTTCTTTTGTAAGAGAAAGGGGGAGGCGCGGTTGGAGGCCATCAGGGGTGTGTTCGTCGCGGTTTGTTTCTTTTGTTGGAACTTGCGCGCGGATGCGTCCTTTTGTCAACCCATTTTTTGAATGAAAAACTGATCATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC



	388

	CCACACCAAAAAACTTTCCACGTGAACCGTTGTAACTATGTTCTGTGCTCTCTTCTCGGAGAGAGCTGAACGAAGGTGGGCTGCTTAATTGTAGTCTGCCGATGTACTTTTAAACCCATTAAACTAATACTGAACTATACTCCGAAAACGAAAGTCTTTGGTTTTAATCAATAACAACTTTCAGCAGTGGATGTCTAGGCTC



	128

	CCACACCAAAAAAACTTTCCACGTGAACCGTTGTAACTATGTTCTGTGCTCTCTTCTCGGAGAGAGCTGAACGAAGGTGGGCTGCTTAATTGTAGTCTGCCGATGTACTTTTAAACCCATTAAACTAATACTGAACTATACTCCGAAAACGAAAGTCTTTGGTTTTAATCAATAACAACTTTCAGCAGTGGATGTCTAGGCGC



	102

	CCACACCAAAAAAACTTTCCACGTGAACCGTTGTAACTATGTTCTGTGCTCTCTTCTCGGAGAGAGCTGAACGAAGGTGGGCTGCTTAATTGTAGTCTGCCGATGTACTTTTAAACCCATTAAACTAATACTGAACTATACTCCGAAAACGAAAGTCTTTGGTTTTAATCAATAACAACTTTCAGCAGTGGATGTCTAGGCCC



	190

	CCACACCAAAAAAACTTTCCACGTGAACCGTTGTAACTATGTTCTGTGCTCTCTTCTCGGAGAGAGCTGAACGAAGGTGGGCTGCTTAATTGTAGTCTGCCGATGTACTTTTAAACCCATTAAACTAATACTGAACTATACTCCGGAAACGAAAGTCTTTGGTTTTAATCAATAACAACTTTCAGCAGTGGATGTCTAGGCTC






The probable Phytopythium litorale has been joined by five shorter
and very similar sequences (differing by a handful of SNPs and a
poly-A length change), which NCBI BLAST matches suggest are all
Pythium coloratum/dissotocum.



Finding more

Another interesting example, SRR6303948 aka OSU536.s203,
from a runoff filtration sample. First with the default settings,
a single unique sequence matching Phytophthora ramorum:

$ tail -n +10 summary/recycled-water-defaults.ITS1.tally.tsv \
  | cut -f 365,386 | grep -v "^0"
<SEE TABLE BELOW>





As a table,



	SRR6303948

	Sequence





	1439

	TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACACCTAAAAAACTTTCCACGTGAACCGTATCAAAACCCTTAGTTGGGGGCTTCTGTTCGGCTGGCTTCGGCTGGCTGGGCGGCGGCTCTATCATGGCGAGCGCTTGAGCCTTCGGGTCTGAGCTAGTAGCCCACTTTTTAAACCCATTCCTAAATACTGAATATACT






Now with the revised primer settings, we get a further nine sequences - and
the extended Phytophthora ramorum sequence drops to third most abundant:

$ tail -n +10 summary/recycled-water-custom.ITS1-long.tally.tsv \
  | cut -f 365,386 | grep -v "^0"
<SEE TABLE BELOW>





As a table, note this is sorted by global abundance:



	SRR6303948

	Sequence





	3287

	CCACACCCGGGATCCTCGATCTTTCTCCTAGGTTAATTGTTGGGCCCTTTGAGGGTGGGCCTTAGGTGCGCTCAAGGATTTTTTCCTGTCCCATGTAGCTTTACTTATTTTTTTGCCTGGGTAAATGATGGATTATTTTTACAACTTTCAGCAATGGATGTCTAGGCTC



	438

	CCACACCAAAAAAACTTACCACGTGAATCTGTACTGTTTAGTTTTGTGCTGCGTTCGAAAGGATGCGGCTAAACGAAGGTTGGCTTGATTACTTCGGTAATTAGGCTGGCTGATGTACTCTTTTAAACCCCTTCATACCAAAATACTGATTTATACTGTGAGAATGAAAATTCTTGCTTTTAACTAGATAACAACTTTCAACAGTGGATGTCTAGGCTC



	5329

	CCACACCAAAAAAACACCCCACGTGAATTGTACTGTATGAGCTATGTGCTGCGGATTTCTGCGGCTTAGCGAAGGTTTCGAAAGAGACCGATGTACTTTTAAACCCCTTTACATTACTGTCTGATAAATTACATTGCAAACATTTAAAGTGGTTGCTCTTAATTTAACATACAACTTTCAACAGTGGATGTCTAGGCTC



	144

	CCACACCCGGGATCCTCGATCTTTCTCCTAGGTTAATTATTGGGCCCTTTGAGGGTGGGCCTTAGGTGCGCTCAAGGATTTTTTCCTGTCCCATGTAGCTTTACTTATTTTTTTGCCTGGGTAAATGATGGATTATTTTTACAACTTTCAGCAATGGATGTCTAGGCTC



	230

	AATCTATCACAATCCACACCTGTGAACTTGCTTGTTGGCCTCTGCATGTGCTTCGGTATGTGCAGGTTGAGCCGATCGGATTAACTTCTGGTCGGCTTGGGGCCTCAACCCAATCCTCGGATTGGTTTGGGGTCGGTCTCTATTAACAACCAACACCAAACCAAACTATAAAAAAACTGAGAATGGCTTAGAGCCAAACTCACTAACCAAGACAACTCTGAACAACGGATATCTTGGCTA



	1319

	CCACACCTAAAAAACTTTCCACGTGAACCGTATCAAAACCCTTAGTTGGGGGCTTCTGTTCGGCTGGCTTCGGCTGGCTGGGCGGCGGCTCTATCATGGCGAGCGCTTGAGCCTTCGGGTCTGAGCTAGTAGCCCACTTTTTAAACCCATTCCTAAATACTGAATATACTGTGGGGACGAAAGTCTCTGCTTTTAACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC



	224

	CCACACCCGGGATCCTCGATCTTTCTCCTAGGTTAATTGTTTGGCCCTTTGAGGGTGGGCCTTAGGTGCGCTCAAGGATTTTTTCCTGTCCCATGTAGCTTTACTTATTTTTTTGCCTGGGTAAATGATGGATTATTTTTACAACTTTCAGCAATGGATGTCTAGGCTC



	231

	CCACACCCGGGATCCTCGATCTTTCTCCTAGGTTAATTGTTGGGCCCTTTGAGGGTGGGCCTTAGGTGCGCTCAAGGATTTTTTCCTGTCCCATGTAGCTTTACTTATTTTTTTGCCTGGGTAAATGATGGATTATTTTTACAACTTTCAGCAACGGATGTCTAGGCTC



	102

	CCACACCAAAAAACACCCCACGTGAATTGTACTGTATGAGCTATGTGCTGCGGATTTCTGCGGCTTAGCGAAGGTTTCGAAAGAGACCGATGTACTTTTAAACCCCTTTACATTACTGTCTGATAAATTACATTGCAAACATTTAAAGTGGTTGCTCTTAATTTAACATACAACTTTCAACAGTGGATGTCTAGGCTC



	189

	CCACACCTAAAAACTTTCCACGTGAATCGTTCTATATAGCTTTGTGCTTTGCGGAAACGCGAGGCTAAGCGAAGGATTAGCAAAGTAGTACTTCGGTGCGAAACACTTTTCCGATGTATTTTTCAAACCCTTTTACTTATACTGAACTATACTCTAAGACGAAAGTCTTGGTTTTAATCCACAACAACTTTCAGCAGTGGATGTCTAGGCTC






NCBI BLAST suggests some of the new sequences could be Oomycetes, but there
are no very close matches - and some of the tenuous best matches include
uncultured fungus, diatoms, green algae, and even green plants.





            

          

      

      

    

  

    
      
          
            
  
Examining the database

This example follows on from Different primers, and assumes
you have used thapbi_pict import with the provided FASTA file
(based on Supplementary Table 3 in Redekar et al. 2019), and created a
THAPBI PICT database named Redekar_et_al_2019_sup_table_3.sqlite.

As the extension might suggest, this is an Sqlite v3 database, and can be
examined directly at the command line if you are very curious. However,
we will briefly review the provided commands within THAPBI PICT for checking
a database.


Database export

The thapbi_pict dump command is intended for database export and/or
answering simple queries without needing to use SQL to query the database.
It defaults to giving plain text tab separated tables, but FASTA is also
supported:

$ thapbi_pict dump -h
...





By default it outputs all the sequences, but you can do simple taxonomic
filtering at genus or species level, for example:

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
  -g Phytophthora -s fallax -o P_fallax.tsv
Wrote 5 txt format entries to 'P_fallax.tsv'
$ cut -c 1-84 P_fallax.tsv
<SEE TABLE BELOW>





This gives a short table, with the sequence truncated for display:



	#Marker

	Identifier

	Genus

	Species

	TaxID

	MD5

	Sequence





	ITS1-long

	DQ297398.1

	Phytophthora

	fallax

	360399

	693cf88b7f57bcc7a3532a6b7ff0268a

	CCA



	ITS1-long

	HQ261557.1

	Phytophthora

	fallax

	360399

	693cf88b7f57bcc7a3532a6b7ff0268a

	CCA



	ITS1-long

	HQ261558.1

	Phytophthora

	fallax

	360399

	693cf88b7f57bcc7a3532a6b7ff0268a

	CCA



	ITS1-long

	HQ261559.1

	Phytophthora

	fallax

	360399

	693cf88b7f57bcc7a3532a6b7ff0268a

	CCA



	ITS1-long

	DQ297392.1

	Phytophthora

	fallax

	360399

	da7ff4ae11bdb6cc2b8c2aea3937481f

	CCA






The final columns give the amplicon marker sequence and its MD5 checksum.

Adding -m or --minimal to the command gives instead:

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
  -g Phytophthora -s fallax -o P_fallax.tsv -m
Wrote 2 txt format entries to 'P_fallax.tsv'
$ cut -c 1-56 P_fallax.tsv
<SEE TABLE BELOW>





Now the table only has one data row per unique marker sequence, again showing
this with the sequence truncated:



	#MD5

	Species

	Sequence





	693cf88b7f57bcc7a3532a6b7ff0268a

	Phytophthora fallax

	CCA



	da7ff4ae11bdb6cc2b8c2aea3937481f

	Phytophthora fallax

	CCA






Alternatively, we can ask for FASTA output:

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
  -g Phytophthora -s fallax -f fasta -o P_fallax.fasta
Wrote 2 fasta format entries to 'P_fallax.fasta'





This produces a short FASTA file as follows (with line wrapping added
for display):

$ cat P_fallax.fasta
>DQ297398.1 Phytophthora fallax taxid=360399;HQ261557.1 Phytophthora fallax
taxid=360399;HQ261558.1 Phytophthora fallax taxid=360399;HQ261559.1 Phytophthora
fallax taxid=360399
CCACACCTAAAAAAATTCCACGTGAACTGTATTGTCAACCAAATTCGGGGATTCCTTGCTAGCGTGCCTTCGGGCGTGCC
GGTAGGTTGAGACCCATCAAACGAAAACATCGGCTGAAAGGTCGGAGCCAGTAGTTACCTTTGTAAACCCTTTACTAAAT
ACTGAAAAACTGTGGGGACGAAAGTCCTTGCTTTTACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC
>DQ297392.1 Phytophthora fallax taxid=360399
CCACACCTTAAAAAATTCCACGTGAACTGTATTGTCAACCAAATTCGGGGATTCCTTGCTAGCGTGCCTTCGGGCGTGCC
GGTAGGTTGAGACCCATCAAACGAAAACATCGGCTGAAAGGTCGGAGCCAGTAGTTACCTTTGTAAACCCTTTACTAAAT
ACTGAAAAACTGTGGGGACGAAAGTCCTTGCTTTTACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC





To be clear, each FASTA record is written as two potentially very long lines.
The first title line consists of the FASTA new record > marker and then
four semi-colon separated accessions with species. The sequence shared by those
four entries is given on the second line (without line breaks as markers tend
not to be overly long, and it facilitates command line analysis/debugging).

Using the optional -m or --minimal switch changes the FASTA output to:

$ thapbi_pict dump -d Redekar_et_al_2019_sup_table_3.sqlite \
  -g Phytophthora -s fallax -f fasta -o P_fallax_minimal.fasta -m
Wrote 2 fasta format entries to 'P_fallax_minimal.fasta'
$ cat P_fallax_minimal.fasta
>693cf88b7f57bcc7a3532a6b7ff0268a Phytophthora fallax
CCACACCTAAAAAAATTCCACGTGAACTGTATTGTCAACCAAATTCGGGGATTCCTTGCTAGCGTGCCTTCGGGCGTGCC
GGTAGGTTGAGACCCATCAAACGAAAACATCGGCTGAAAGGTCGGAGCCAGTAGTTACCTTTGTAAACCCTTTACTAAAT
ACTGAAAAACTGTGGGGACGAAAGTCCTTGCTTTTACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC
>da7ff4ae11bdb6cc2b8c2aea3937481f Phytophthora fallax
CCACACCTTAAAAAATTCCACGTGAACTGTATTGTCAACCAAATTCGGGGATTCCTTGCTAGCGTGCCTTCGGGCGTGCC
GGTAGGTTGAGACCCATCAAACGAAAACATCGGCTGAAAGGTCGGAGCCAGTAGTTACCTTTGTAAACCCTTTACTAAAT
ACTGAAAAACTGTGGGGACGAAAGTCCTTGCTTTTACTAGATAGCAACTTTCAGCAGTGGATGTCTAGGCTC





This discards the original accessions and instead uses >, MD5 checksum,
space, semi-colon separated list of taxonomic assignments, new line, sequence,
new line. Again, there is deliberately no sequence line wrapping in the file
itself.



Edit graph

In the worked example with the default database, we introduced the
edit-graph command for use with CytoScape to examine the sequence space of
the samples. It can also be run on a database alone provided you include the
-k or --marker switch:

$ thapbi_pict edit-graph -k ITS1-long \
  -d Redekar_et_al_2019_sup_table_3.sqlite \
  -o Redekar_et_al_2019_sup_table_3.xgmml
Loaded 838 unique ITS1-long sequences from DB.
Computed Levenshtein edit distances.
Will draw 533 nodes with at least one edge (305 are isolated sequences).





Of the 838 unique sequences in the database, just over three hundred are
isolated sequences (over 3bp edits away from anything else). The remaining
five hundred plus give us an interesting edit distance graph.

Opening this in CytoScape the first thing that struck me was the largest two
components are both for Pythium regulare - suggesting if these are truly
all from one species that it has at least two distinct ITS1 markers in the
genome?

Another use of this view would be to consider the genus conflicts reported
by the thapbi_pict conflicts command - most of the handful of Lagenidium
and Brevilegnia nodes are isolated.





            

          

      

      

    

  

    
      
          
            
  
Pipeline with custom database


Running thapbi-pict pipeline

Compared to the original worked example, we must specify our custom database
(which contains the primer information, and matching primer trimmed entries):

$ mkdir -p intermediate_long/ summary/
$ thapbi_pict pipeline -i raw_data/ -s intermediate_long/ \
  -o summary/recycled-water-custom \
  -d Redekar_et_al_2019_sup_table_3.sqlite -m onebp \
  -t metadata.tsv -x 7 -c 1,2,3,4,5,6
...
onebp classifier assigned species/genus to 529 of 3053 unique sequences from 1 files
Wrote summary/recycled-water-custom.ITS1-long.samples.onebp.*
Wrote summary/recycled-water-custom.ITS1-long.reads.onebp.*
...
$ ls -1 summary/recycled-water-custom.*.onebp.*
summary/recycled-water-custom.ITS1-long.onebp.tsv
summary/recycled-water-custom.ITS1-long.reads.onebp.tsv
summary/recycled-water-custom.ITS1-long.reads.onebp.xlsx
summary/recycled-water-custom.ITS1-long.samples.onebp.tsv
summary/recycled-water-custom.ITS1-long.samples.onebp.xlsx





Note the classifier method was set explicitly with -m (or --method),
using the default of onebp. With the narrower set of Phytophthora
sequences and comparatively well sampled database, that was a good default.
Recall running with the Phytophthora defaults gave a taxonomic assignment
for 2122757 of 2598566 reads - which was 82% of 2.6 million reads.

Here with our relatively sparse database, the onebp method is perhaps
overly strict - only 17% of the unique sequences matched (529 of 3053 ASVs),
although it is more like a third if we count the number of reads matched.
However, with the different primer settings, we are examining over ten
million reads (nearly four times as many), so we’re doing about twice as well
in terms of number of raw reads with a classification.

Naturally the more lenient or fuzzy blast based classifier makes even
more matches:

$ thapbi_pict pipeline -i raw_data/ -s intermediate_long/ \
  -o summary/recycled-water-custom \
  -d Redekar_et_al_2019_sup_table_3.sqlite -m blast \
  -t metadata.tsv -x 7 -c 1,2,3,4,5,6
...
blast classifier assigned species/genus to 1036 of 3053 unique sequences from 1 files
Wrote summary/recycled-water-custom.ITS1-long.samples.blast.*
Wrote summary/recycled-water-custom.ITS1-long.reads.blast.*
...
$ ls -1 summary/recycled-water-custom.*.blast.*
summary/recycled-water-custom.ITS1-long.blast.tsv
summary/recycled-water-custom.ITS1-long.reads.blast.tsv
summary/recycled-water-custom.ITS1-long.reads.blast.xlsx
summary/recycled-water-custom.ITS1-long.samples.blast.tsv
summary/recycled-water-custom.ITS1-long.samples.blast.xlsx





Better, in that we are up to 34% of the unique sequences with a taxonomic
assignment (1036 of 3053 ASVs). But how many of these are false positives?
Sadly, we don’t have any controls for this dataset in order to objectively
assess the classifier performance of the various algorithm and database
combinations.

However we can say that this database and indeed the published Oomycetes
ITS1 sequences in general is relatively sparse outside Phytophthora (and
even there, we as a community have room for improvement).



Results

We will focus on the same four low diversity samples for a brief comparison
of the defaults, custom DB with onebp, and custom DB with blast.

Previously with the default DB and default onebp classifier:

$ cut -f 6,7,8 summary/recycled-water-defaults.ITS1.samples.onebp.tsv \
  | grep -E "(SRR6303586|SRR6303586|SRR6303588|SRR6303596|SRR6303948)"
OSU482       SRR6303588  Phytophthora chlamydospora, Phytophthora x stagnum(*), Unknown
OSU483       SRR6303586  Phytophthora chlamydospora, Phytophthora x stagnum(*)
OSU536.s203  SRR6303948  Phytophthora ramorum
OSU121       SRR6303596  Phytopythium (unknown species)





With the custom DB:

$ cut -f 6,7,8 summary/recycled-water-custom.ITS1-long.samples.onebp.tsv \
  | grep -E "(SRR6303586|SRR6303586|SRR6303588|SRR6303596|SRR6303948)"
OSU482       SRR6303588  Phytophthora chlamydospora, Phytophthora sp. CAL-2011b(*)
OSU483       SRR6303586  Phytophthora chlamydospora, Phytophthora sp. CAL-2011b(*)
OSU536.s203  SRR6303948  Phytophthora ramorum, Unknown
OSU121       SRR6303596  Phytopythium litorale, Pythium aff. diclinum(*), Pythium aff. dictyosporum(*), Pythium aff. dissotocum(*), Pythium cf. dictyosporum(*), Pythium coloratum(*), Pythium diclinum(*), Pythium dissotocum(*), Pythium lutarium, Pythium sp. CAL-2011f(*), Pythium sp. group F(*)





We get the same using the top BLAST hit:

$ cut -f 6,7,8 summary/recycled-water-custom.ITS1-long.samples.blast.tsv \
  | grep -E "(SRR6303586|SRR6303586|SRR6303588|SRR6303596|SRR6303948)"
OSU482       SRR6303588  Phytophthora chlamydospora, Phytophthora sp. CAL-2011b(*)
OSU483       SRR6303586  Phytophthora chlamydospora, Phytophthora sp. CAL-2011b(*)
OSU536.s203  SRR6303948  Phytophthora ramorum, Unknown
OSU121       SRR6303596  Phytopythium litorale, Pythium aff. diclinum(*), Pythium aff. dictyosporum(*), Pythium aff. dissotocum(*), Pythium cf. dictyosporum(*), Pythium coloratum(*), Pythium diclinum(*), Pythium dissotocum(*), Pythium lutarium, Pythium sp. CAL-2011f(*), Pythium sp. group F(*)





On this subset using onebp versus blast seems not to matter.
The sample report does not go down to the sequences in each sample,
for that you can use the reads report, or look at the intermediate
FASTA files as discussed in the previous primers section.

The first two example differ due to the DB curation about exactly
which Phytophthora is present. Sample OSU121 aka SRR6303596
went from one Phytopythium litorale sequence to being joined
by a much more numerous Pythium coloratum/dissotocum sequence
(plus some lower abundance variants of it). Likewise,
OSU536.s203 aka SRR6303948 had one sequence for
Phytophthora ramorum, but now has multiple unknown sequences.





            

          

      

      

    

  

    
      
          
            
  
Drained fish ponds 12S

This example uses a single 12S marker applied to fishing ponds which were
later drained allowing identification of all the individual fish present:


Muri et al. (2020) Read counts from environmental DNA (eDNA)
metabarcoding reflect fish abundance and biomass in drained ponds.
https://doi.org/10.3897/mbmg.4.56959




We provide a crude 12S database containing fish and off-target mammal and bird
matches.



	Marker data

	Presence and absence








            

          

      

      

    

  

    
      
          
            
  
Marker data

Either clone the THAPBI PICT source code repository, or decompress the
latest source code release (.tar.gz file). You should find it contains
a directory examples/drained_ponds/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis
discussed.


FASTQ data

File PRJNA638011.tsv was download from the ENA and includes the FASTQ
checksums, URLs, and sample metadata. Related file metadata.tsv combines
this with metadata about the samples from the paper (see below).

Script setup.sh will download the raw FASTQ files for Muri et al.
(2020) from https://www.ebi.ac.uk/ena/data/view/PRJNA638011 - you could also
use https://www.ncbi.nlm.nih.gov/bioproject/PRJNA638011/

It will download 198 raw FASTQ files (99 pairs), taking about 550MB on disk

If you have the md5sum tool installed (standard on Linux), verify the
FASTQ files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
$ cd ..





There is no need to decompress the files.



Amplicon primers & reference sequences

A region of 12S was amplified using a previously published primer pair
(ACTGGGATTAGATACCCC and TAGAACAGGCTCCTCTAG) described here:


Kelly et al. (2014) Understanding PCR processes to draw meaningful
conclusions from environmental DNA studies.
https://doi.org/10.1038/s41598-019-48546-x




This primer amplifies not just the fish of interest, but also birds and
mammals (including human).

Rather than trying to use the same curated database from the University of
Hull Evolutionary and Environmental Genomics Group, who also wrote metaBEAT
(metaBarcoding and Environmental Analysis Tool) which was used in the paper,
we provide a crudely curated database culled from stringent BLASTN matches in
the NCBI NT database (search run with 100% query coverage and 99% identity,
see provided scripts/blast_to_fasta.py), as file NCBI_12S.fasta. The
run.sh script starts by loading this into a new THAPBI PICT database.



Metadata

The provided file metadata.tsv has ten columns, the first three are from
PRJNA638011.tsv (ENA metadata) and the rest from the paper’s Supplementary
Table S2 - cross referenced on the sample name/alias:


	run_accession, from ENA metadata, e.g. “SRR11949879”


	sample_alias, from ENA metadata, e.g. “Lib3-M3-1F1”


	sample_title, from ENA metadata, e.g. “MCE-Sample 1 filter 1”


	samples, from Supplementary Table S2, e.g. “M3-1F1”


	lake, from Table S2, e.g. “Middle_lake”


	filter, from Table S2, e.g. “MCE”


	treatment, from Table S2, e.g. “F1”


	extracted, from Table S2, e.g. “Filter”


	control, from Table S2, either “”, “blank”, “negative”, or “positive”


	date, from Table S2, e.g. “17.02.2017”




When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 5,6,7,8,9,10,4,3





Argument -t metadata.tsv says to use this file for the metadata.

The -x 1 argument indicates the filename stem can be found in column 1,
the ENA assigned run accession.

Argument -c 5,6,7,8,9,10,4,3 says which columns to display and sort by (do
not include the indexed column again). If for example the accession was
listed first, it would be sorted on that, which is not helpful here. If you
prefer to sort on filter first, that change should be straightforward.

We have not given a -g argument to assign colour bands in the Excel
reports, so it will default to the first column in -c, meaning we get
three coloured bands for “Middle_lake”, “NA” (controls), and “New_lake”.



Other files

Files cichlid_control.known.tsv and negative_control.known.tsv and are
used in setup.sh to create expected/*.known.tsv entries for the
positive and negative controls, including the blank controls.

12 fish species were translocated to New Lake, of which nine were also in the
middle lake. Referring to the results text and Figure 1B, and pooling the two
observed hybrids with a parent species, the expected species in the two lakes
are as follows.

Middle lake and new lake both had:



	Abramis brama


	Barbus barbus


	Carassius carassius


	Cyprinus carpio


	Perca fluviatilis


	Rutilus rutilus


	Scardinius erythrophthalmus


	Squalius cephalus


	Tinca tinca







New lake only also had:



	Acipenser spp.


	Ctenopharyngodon idella


	Silurus glanis







File middle_lake.known.tsv lists the 9 species found in the middle lake,
and new_lake.known.tsv lists the 12 species in the new lake (although not
all fish are expected at all sites within each lake), and these are assigned
to the remaining samples as expected/*.known.tsv by running setup.sh.





            

          

      

      

    

  

    
      
          
            
  
Presence and absence


Controls

Quoting the Muri et al. (2020) paper:


A low-frequency noise threshold of 0.001 (0.1%) was applied across the
dataset to reduce the probability of false positives arising from
cross-contamination or tag-jumping (De Barba et al. 2014; Hänfling et al.
2016). Based on the level of contamination found in sampling/filtration
blanks and PCR negatives, a second arbitrary threshold was applied and all
records occurring with less than 50 reads assigned were removed.




To match the paper, this example uses -a 50 for an absolute threshold of
50, and -f 0.001 for a 0.1% sample specific factional threshold.

At this threshold, the 4 cichlid “positive” samples, 6 PCR “negative”, and 8
“blank” controls are perfect - as far as the fish go. We do see unexpected
human and chicken reads in the PCR negatives, and also ducks, cattle and pigs
in the field “blanks”:

$ grep -E "(^#|positive|negative|blank)" summary/drained_ponds.12S.samples.onebp.tsv | cut -f 5,10-11,16,19
<SEE TABLE BELOW>





Or, filter/search summary/drained_ponds.12S.samples.onebp.tsv in Excel:



	control

	Sequencing sample

	Classification summary

	Threshold

	Accepted





	blank

	SRR11949861

	
	




	50

	0



	blank

	SRR11949885

	
	




	50

	0



	blank

	SRR11949884

	(Off-target) Homo sapiens, (Off-target) Sus scrofa

	50

	544



	blank

	SRR11949883

	(Off-target) Bos taurus, (Off-target) Homo sapiens, (Off-target) Sus scrofa

	50

	1629



	blank

	SRR11949882

	(Off-target) Anatidae (waterfowl)

	50

	61



	blank

	SRR11949881

	(Off-target) Homo sapiens

	50

	56



	blank

	SRR11949880

	(Off-target) Anatidae (waterfowl), (Off-target) Homo sapiens

	50

	436



	blank

	SRR11949834

	(Off-target) Homo sapiens

	50

	175



	negative

	SRR11949908

	
	




	50

	0



	negative

	SRR11949907

	(Off-target) Gallus gallus, (Off-target) Homo sapiens

	50

	606



	negative

	SRR11949851

	
	




	50

	0



	negative

	SRR11949850

	
	




	50

	0



	negative

	SRR11949838

	(Off-target) Homo sapiens

	50

	71



	negative

	SRR11949837

	(Off-target) Homo sapiens

	50

	356



	positive

	SRR11949836

	Astatotilapia calliptera(*), Maylandia zebra(*)

	50

	39748



	positive

	SRR11949835

	Astatotilapia calliptera(*), Maylandia zebra(*)

	50

	39244



	positive

	SRR11949906

	Astatotilapia calliptera(*), Maylandia zebra(*)

	65

	62249



	positive

	SRR11949849

	Astatotilapia calliptera(*), Maylandia zebra(*)

	50

	24566






Only in one sample (SRR11949906, a positive control) was the percentage
based abundance threshold stricter than the absolute threshold (65 not 50),
and it still gives the highest number of reads.

Note that the positive samples only yield a single unique sequence (MD5
checksum 17dbc1c331d17cd075aabd6f710a039b) which matches both the cichlid
control species Astatotilapia calliptera and Maylandia zebra.



High level overview

Looking over summary/drained_ponds.12S.samples.onebp.xlsx in Excel, or the
TSV equivalent of the sample report, there are some general trends visible.

First, as noted above the controls are extremely clean with just the expected
cichlid species for the positive controls, and a few off-target matches in the
PCR negatives and field blanks as noted above.

Next, both the Middle Lake Sterivex Ethanol Buffer, and Middle Lake Sterivex
RNAlater Buffer are very clean. There are traces of human and waterfowl, and
but only three of these buffer samples shows any fish (eg SRR11949911 aka
5RNB). In contrast, most of the Middle Lake Sterivex Longmire Buffer
samples do give fish reads.

Controls and buffers aside, all the field samples gave Anatidae (waterfowl)
matches, most had human. There were traces of other birds and mammals such as
pig and dog - with most of the new lake samples showing sheep (Ovis).

As to the fish, we see strong signal in most samples for Abramis brama,
Carassius carassius, Cyprinus carpio, Rutilus rutilus and Tinca tinca.



Expected Fish

This paper was selected as an example because something is known about the
expected content of all the biological samples - the lakes were drained and
all the fish identified, counted and weighed. However, we cannot expect all
the species present to have left DNA at all the sampling points within their
lake, but that is a useful approximation for assessing the classifier:

$ cut -f 1-5,9,11 summary/drained_ponds.12S.assess.onebp.tsv
<SEE TABLE BELOW>





You might prefer to open this in Excel:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	433

	388

	331

	5877

	0.55

	0.624



	(Off-target) Anatidae (waterfowl)

	0

	70

	0

	29

	0.00

	1.000



	(Off-target) Apodemus

	0

	4

	0

	95

	0.00

	1.000



	(Off-target) Ardea cinerea

	0

	11

	0

	88

	0.00

	1.000



	(Off-target) Bos taurus

	0

	3

	0

	96

	0.00

	1.000



	(Off-target) Canis lupus familiaris

	0

	7

	0

	92

	0.00

	1.000



	(Off-target) Capra hircus

	0

	1

	0

	98

	0.00

	1.000



	(Off-target) Columba

	0

	47

	0

	52

	0.00

	1.000



	(Off-target) Gallinula chloropus

	0

	50

	0

	49

	0.00

	1.000



	(Off-target) Gallus gallus

	0

	13

	0

	86

	0.00

	1.000



	(Off-target) Homo sapiens

	0

	83

	0

	16

	0.00

	1.000



	(Off-target) Ovis aries

	0

	17

	0

	82

	0.00

	1.000



	(Off-target) Ovis dalli

	0

	1

	0

	98

	0.00

	1.000



	(Off-target) Phalacrocorax carbo

	0

	25

	0

	74

	0.00

	1.000



	(Off-target) Sturnus

	0

	3

	0

	96

	0.00

	1.000



	(Off-target) Sus scrofa

	0

	16

	0

	83

	0.00

	1.000



	(Off-target) Turdus

	0

	7

	0

	92

	0.00

	1.000



	Abramis brama

	65

	0

	16

	18

	0.89

	0.198



	Acipenser spp.

	0

	0

	9

	90

	0.00

	1.000



	Alburnus mossulensis

	0

	1

	0

	98

	0.00

	1.000



	Astatotilapia calliptera

	4

	0

	0

	95

	1.00

	0.000



	Barbus barbus

	46

	0

	35

	18

	0.72

	0.432



	Carassius carassius

	64

	0

	17

	18

	0.88

	0.210



	Ctenopharyngodon idella

	3

	15

	6

	75

	0.22

	0.875



	Cyprinus carpio

	61

	0

	20

	18

	0.86

	0.247



	Maylandia zebra

	4

	0

	0

	95

	1.00

	0.000



	Perca fluviatilis

	40

	0

	41

	18

	0.66

	0.506



	Pseudorasbora parva

	0

	2

	0

	97

	0.00

	1.000



	Rutilus rutilus

	63

	0

	18

	18

	0.88

	0.222



	Scardinius erythrophthalmus

	6

	0

	75

	18

	0.14

	0.926



	Silurus glanis

	9

	0

	0

	90

	1.00

	0.000



	Spinibarbus denticulatus

	0

	11

	0

	88

	0.00

	1.000



	Squalidus gracilis

	0

	1

	0

	98

	0.00

	1.000



	Squalius cephalus

	6

	0

	75

	18

	0.14

	0.926



	Tinca tinca

	62

	0

	19

	18

	0.87

	0.235



	OTHER 37 SPECIES IN DB

	0

	0

	0

	3663

	0.00

	0.000








False positives

We touched on the assorted “false positives” from the off-target 12S PCR
amplification above. What is more interesting is the fish false positives.
Let’s look at these starting with the most false positives.


Ctenopharyngodon idella

First, many middle lake samples unexpectedly have Ctenopharyngodon idella
(this is expected in the new lake samples). Why? They all stem from sequence
285edce3d193c92b1959e60bc130b518 which was matched to both C. idella
and Tinca tinca (expected in both lakes):

>285edce3d193c92b1959e60bc130b518
ACTATGCTCAGCCATAAACCTAGACATCCACCTACAATTAAACGTCCGCCCGGGTACTACGAGCATTAGCTTGAAACCCA
AAGGACCTGACGGTGCCTTAGACCCCC





This is both a one base pair edit away from AY897013.1 etc as C. idella, and
from AB218686.1 etc as T. tinca. Reviewing the NCBI BLAST matches both sets
of species are supported from multiple complete mitochondrion genomes and a
range of research groups. In the context of this experiment, we could infer
for the four middle lake samples this sequence was T. tinca.



Spinibarbus denticulatus

Next, we see 16 samples with unexpected cyprinid fish Spinibarbus
denticulatus. Referring to the read report, all are from a single sequence
4c53f6ed1ecdad3af2299999ec83d756 which has been matched perfectly to both
this unexpected species and expected species Carassius carassius:

>4c53f6ed1ecdad3af2299999ec83d756
ACTATGCTCAGCCGTAAACTTAGACATCCTACTACAATAGATGTCCGCCAGGGTACTACGAGCATTAGCTTAAAACCCAA
AGGACCTGACGGTGTCTCAGACCCCC





Given the actual fish in these lakes have been taxonomically identified, we
can safely dismiss this - and perhaps drop AP013335.1 S. denticulatus from
the ad-hoc DB?

A similar choice was made in compiling the ad hoc database, dropping all the
Sander sp. entries for the following sequence in favour of just Perca
fluviatilis as the sole expected Percidae:

>7e88b1bdeff6b6a361cc2175f4f630fd
ACTATGCCTAGCCATAAACATTGGTAGCACACTACACCCACTACCCGCCTGGGAACTACGAGCATCAGCTTGAAACCCAA
AGGACTTGGCGGTGCTTTAGATCCAC





This was based on the authors’ choice:


All fish OTUs were identified to species level with the exceptions of
records matching the family Percidae. Percidae records were manually
assigned to P. fluviatilis as this was the only species of the family
identified in the study area during fish relocation.






Pseudorasbora parva

We see two samples containing Pseudorasbora parva, the invasive species
which prompted these fish ponds to be drained as a control measure. You can
find this in the read report, at the command line:

$ grep -E "(Pseudorasbora parva|samples|predictions)" \
  summary/drained_ponds.12S.reads.onebp.tsv | cut -f 2,3,7,48,59
                                                       samples          2LMB         3LMF
MD5                               onebp-predictions    Total-abundance  SRR11949854  SRR11949925
e819f3c222d6493572534fb6a5b7cda7  Pseudorasbora parva  520              323          197





Specifically we saw 323 reads in SRR11949854 aka 2LMB and 197 reads in
SRR11949925 aka 3LMF - both middle lake Sterivex (STX) samples.
Quoting the paper:


P. parva reads found in two Middle Lake-STX samples (279 and 148 reads)
were also excluded from further analyses as after eradication this species
was not physically present at the site surveyed.




The exact counts differ, but referring to the paper’s supplementary data the
sample names match.



Other Fish

We also see one false positive for each of the two fish species Alburnus
mossulensis, and Squalidus gracilis:

$ grep -E "(Alburnus mossulensis|samples|predictions)" \
  summary/drained_ponds.12S.reads.onebp.tsv | cut -f 2,3,7,25
                                                                      samples          M3-MF2
MD5                               onebp-predictions                   Total-abundance  SRR11949859
916da937dccfd5d29502e83713e5d998  Abramis brama;Alburnus mossulensis  98               98





This sequence is ambiguous with equally good matches to expected species
Abramis brama. Again, we might remove Alburnus mossulensis from the DB?

$ grep -E "(Squalidus gracilis|samples|predictions)" \
  summary/drained_ponds.12S.reads.onebp.tsv | cut -f 2,3,7,20
                                                      samples          M3-4F2
MD5                               onebp-predictions   Total-abundance  SRR11949871
c0d532d1c6f8ffff9c72ac4a1873151c  Squalidus gracilis  82               82





This sequence match is with AP011393.1 in the provided reference set.




False negatives

The classifier assessment shown above expected all the fish in each lake to be
found at all the sites within that lake - an overly strong assertion which
could explain many of the reported false negatives.

However, there is one clear false negative - neither this nor the original
analysis found any Acipenser spp.



True positives

Rather than reviewing all of the true positives, I will note that in some
cases we found more reads and thus declared a result in more samples.
For example, we report Barbus barbus in 49 samples, versus:


In addition, Barbus barbus was detected at two sites (202 reads), …




We found Scardinius erythrophthalmus in six samples:

$ grep -E "(Scardinius erythrophthalmus|samples|predictions)" \
  summary/drained_ponds.12S.reads.onebp.tsv | cut -f 7,8,12,13,83,84,85
samples          M3-1F1       M3-5F1       M3-6F1       7RNF         8RNF         MRNF
Total-abundance  SRR11949879  SRR11949870  SRR11949868  SRR11949893  SRR11949886  SRR11949852
761              156          120          147          136          76           126





Quoting the original paper:


The presence of Scardinius erythrophthalmus was found at two sites with
a low number of reads (38 and 25 reads) and, therefore, removed after
applying the filter threshold




In these cases at least, we are seeing much higher read counts. Given the
supplementary data provided, it could be possible to plot the read counts from
the two methods against each other.



Conclusion

While not in-depth, this hopefully demonstrates the THAPBI PICT could be
meaningfully applied to this 12S dataset which was originally analysed with
metaBEAT v0.97.11.





            

          

      

      

    

  

    
      
          
            
  
Fungal Mock Community ITS1 & 2

Here we consider mock communities of 19 fungal sequences (in both equal and
staggered ratios), prepared with various protocols, and negative controls.

This example is based on the two amplicon sequencing libraries from this paper:


Bakker (2018) A fungal mock community control for amplicon sequencing
experiments.
https://doi.org/10.1111/1755-0998.12760




The first library used a single primer set targeting ITS1, while the second
library used two sets of primers targeting a different region of ITS1, and
ITS2.



	Marker data

	Community Edit Graphs

	Presence and absence

	Unexpected sequences








            

          

      

      

    

  

    
      
          
            
  
Marker data

Either clone the THAPBI PICT source code repository, or decompress the
latest source code release (.tar.gz file). You should find it contains
a directory examples/fungal_mock/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis
discussed.


FASTQ data

File PRJNA377530.tsv was download from the ENA and includes the FASTQ
checksums, URLs, and sample metadata.

Script setup.sh will download the raw FASTQ files for Bakker (2018) from
https://www.ebi.ac.uk/ena/data/view/PRJNA377530

It will download 122 raw FASTQ files (61 pairs), taking 346MB on disk.

If you have the md5sum tool installed (standard on Linux), verify the FASTQ
files downloaded correctly:

$ cd raw_data/AL1/
$ md5sum -c MD5SUM.txt
...
$ cd ../../





$ cd raw_data/AL1/
$ md5sum -c MD5SUM.txt
...
$ cd ../../





There is no need to decompress the files.



Amplicon primers & reference sequences

Amplicon library one (AL1) amplified a small region of ITS1 using primer pair
BITS/B58S3 (ACCTGCGGARGGATC and GAGATCCRTTGYTRAAAGTT), as shown in the
paper’s supplementary Table S4.

Amplicon library two (AL2) amplified a larger region of ITS1 using primer pair
ITS1f/ITS2 (CTTGGTCATTTAGAGGAAGTAA and GCTGCGTTCTTCATCGATGC), which
includes the first library’s target region entirely. Similar yields as per
supplementary Table S4 vs S5.

Additionally, amplicon library two (AL2) amplified ITS2 using primer pair
ITS3‐KYO2 with ITS4‐KYO3 (GATGAAGAACGYAGYRAA and CTBTTVCCKCTTCACTCG),
with lower yields as per supplementary Table S5 vs S6.

The example must run THAPBI PICT twice. First using a single-marker database
for AL1 using the BITS/B58S3 primers, and then with a dual-marker database for
AL2 using the ITS1f/ITS2 and ITS3‐KYO2/ITS4‐KYO3 primers.
In fact the example runs it third time, as we can
also try the BITS/B58S3 primers on the second amplicon library, because they
amplify a subregion of what the ITS1f/ITS2 pair amplify. See the primer
discussion on the similar Redekar et al. (2019) worked example.

Files ITS1.fasta and ITS2.fasta were extracted from supplementary
materials appendix S2, with the species name alone added to the FASTA titles
(for input to thapbi_pict import with primer trimming).



Metadata

The amplicon specific files metadata_AL1.tsv and metadata_AL2.tsv are
based on the metadata downloaded from the ENA, with some reformatting. The
split into amplicon one and two was based on supplementary Tables S4, S5 and
S6 (for the mock community samples) and reading the paper (for placing the
negative controls).

They have seven columns:


	Accession, assigned by the public archive, e.g. “SRR5314337”


	MiSeq-name, author’s filename stem, e.g. “FMockE.HC_S190”


	Condition, based on original name without replicate suffix, e.g. “MockE_HC”


	Replicate, numeric, e.g. “1”


	Sample-type, either “fungal mock community” or “negative control”


	Group, e.g. “even” or “staggered A”


	Protocol, e.g. “high PCR cycle number” or “standard workflow”




When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata_AL1.tsv -c 5,6,7,3,4,2 -x 1 -g 6
$ thapbi_pict ... -t metadata_AL2.tsv -c 5,6,7,3,4,2 -x 1 -g 6





Argument -t metadata.tsv says to use this file for the metadata.

Argument -c 5,6,7,3,4,2 says which columns to display and sort by. This
means Sample-type, Group, Protocol, Condition, Replicate, MiSeq Name. The
purpose here is to group the samples logically (sorting on accession or MiSeq
Name would not work), and suitable for group colouring.

Argument -x 1 (default, so not needed) indicates the filename stem can be
found in column 1, Accession. We might have downloaded the files and used the
author original names, in which case -x 2 ought to work.

Argument -g 6 means assign colour bands using column 6, Group. This is
used in the Excel reports.



Other files

The provided negative_control.known.tsv and mock_community.known.tsv
files lists the expected species in the negative controls (none) and the mock
community samples (the same 19 species, although not always in equal ratios).

Sub-folders under intermediate/ are used for intermediate files, a folder
for each amplicon library (AL1 and AL2) and primer-pair combination.





            

          

      

      

    

  

    
      
          
            
  
Community Edit Graphs

The sequence Edit Graph is very useful for understanding what came off
the sequencer - although you may need to play with the thresholds to find a
sweet spot for hiding the noise.

My main conclusion from the figures below is that the THAPBI PICT default
onebp classifier is reasonable for these fungal communities markers.
However, for the ITS1 marker Fusarium needs closer examination, and there
should be even more database entries for Rhizomucor irregularis. You would
of course also need to expand the database beyond the 19 species in the mock
community to use these ITS1 or ITS2 fungal markers more generally.


Image generation

If you have loaded an XGMML network file from THAPBI PICT into Cytoscape, you
can interactively select nodes based on the Max-sample-abundance attribute
and hide or remove them. This is helpful for exploring what minimum threshold
to use for drawing a clear edit graph, but this does not update the
Sample-count and node sizes which are based on it.

For that you can re-run thapbi_pict edit-graph with the higher sample
level minimum abundance setting (-a or --abundance). You do not need
to regenerate the intermediate per-sample FASTA files unless you want to use a
lower threshold.

The following figures are from the example script run.sh which called
thapbi_pict edit-graph with -a 75, meaning a unique sequence had to be
in a sample from at least 75 reads to be considered. Using a lower value gives
a much noiser picture (see the Halo effect discussed earlier).

Additionally this used -k (or --marker) to force including all of the
database sequences (dark red nodes), as some did not appear in the samples
(shown as the smallest dark red dots, typically the bottom row of the image).
And, it used -m - (or --method -) to deliberately not label the nodes
with the classifier output - only the data entries get a species label.

The XGMML files were loaded, automatically laid out using the “Perfuse Force
Directed Layout” menu, manually adjusted to give a reasonably consistent node
placement for comparison between the figures, and then images exported in SVG
format (other formats are also supported including PDF and PNG).



Amplicon library one - ITS1

Starting with amplicon library one, where the BITS/B58S3 primers were used for
a short fragment of ITS1.

[image: Sequence edit-graph for amplicon library one using BITS/B58S3 primers for ITS1.]
 [https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/amp_lib_one.BITS_B58S3.edit-graph.a75.svg?sanitize=true]This is from file AL1.BITS_B58S3.edit-graph.a75.xgmml created by
run.sh.

The dark red nodes represent sequences in the database - given how this
database was constructed to match the mock community, we would hope to see all
the database entries represented in the samples. Some are missing at this
abundance threshold (four bottom row entries Saccharomyces cerevisiae,
Ustilago maydis, Rhizomucor miehei and Chytriomyces hyalinus, plus the
four Rhizomucor irregularis entries shown across the middle.

The large red nodes are the well represented community members, starting with
Naganishia albida shown top left, which has four different 1bp variants some
of which are large meaning they appear in many samples - you can see the
sample counts in you load the XGMML file for this graph in Cytoscape. These
are common enough to suggest they could be alternative versions of the ITS1
region in the genomes of these community members?

The (sometimes large) grey nodes not connected to a red node represent unwanted
reads, likely contaminations discussed later.

In general each species is represented by a single connected component. The
exceptions are Rhizomucor irregularis (multiple distantly related entries)
and the Fusarium. The expected sequence for Fusarium verticillioides was
not seen at all, however there are a great many copies one base away from
the expected Fusarium oxysporum sequence (abbreviated MD5 checksum
bb28f2, in full bb28f2b57f8fddefe6e7b5d01eca8aea). Is this perhaps
coming from the Fusarium verticillioides strain?



Amplicon library two - ITS1

First, analysed using the same BITS/B58S3 primers as for ITS1 as in amplicon
library one - the unique sequence MD5 checksums overlap with those seen in
amplicon one:

[image: Sequence edit-graph for amplicon library two using BITS/B58S3 primers for ITS1 (although actually amplified with ITS1f/ITS2 primers).]
 [https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/amp_lib_two.BITS_B58S3.edit-graph.a75.svg?sanitize=true]This is from file AL2.BITS_B58S3.edit-graph.a75.xgmml created by
run.sh.

Broadly the same as from amplicon library one, but notice the
presence/absence patterns are different. Also there are more variants of the
bb28f2 Fusarium, and a pair of unexpected grey nodes 3bp apart
(e055cb and ee5482, middle left, discussed below).

Now, using the actual primer pair, ITS1f/ITS2, which give a longer ITS1
fragment. Note that the sequences are extended so the checksums are different
to those in the preceding images, but again broadly the same picture as the
two images above:

[image: Sequence edit-graph for amplicon library two using ITS1f/ITS2 primers for ITS1.]
 [https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/amp_lib_two.ITS1f_ITS2.edit-graph.a75.svg?sanitize=true]This is from file AL2.ITS1f_ITS2.edit-graph.a75.xgmml created by
run.sh.

The curious large grey node one edit away from Fusarium oxysporum has
abbreviated MD5 checksum f1b689, or in full
f1b689ef7d0db7b0d303e9c9206ee5ad (given in the XGMML node attributes).
Referring back to the intermediate FASTA files or the read report, this does
indeed represent the extended version of bb28f2b57f8fddefe6e7b5d01eca8aea
with the first primer set:

>bb28f2b57f8fddefe6e7b5d01eca8aea
ATTACCGAGTTTACAACTCCCAAACCCCTGTGAACATACCAATTGTTGCCTCGGCGGATCAGCCCGCTCCCGGTAAAACG
GGACGGCCCGCCAGAGGACCCCTAAACTCTGTTTCTATATGTAACTTCTGAGTAAAACCATAAATAAATCAA

>f1b689ef7d0db7b0d303e9c9206ee5ad
AAGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACCGAGTTTACAACTCCCAAACCCCTGTGAACATA
CCAATTGTTGCCTCGGCGGATCAGCCCGCTCCCGGTAAAACGGGACGGCCCGCCAGAGGACCCCTAAACTCTGTTTCTAT
ATGTAACTTCTGAGTAAAACCATAAATAAATCAAAACTTTCAACAACGGATCTCTTGGTTCTG





Using an NCBI BLAST search, this exact sequence has been published from over a
dozen different Fusarium species including Fusarium oxysporum, but not at
the time of writing from Fusarium verticillioides.

The small pair of grey nodes 3bp apart (long diagonal line, middle left),
57b06d and 05007e, are the extended equivalents of e055cb and
ee5482 shown in the same place in the previous image. They seem to match
glomeromycetes, perhaps from the Rhizophagus in the mock community.



Amplicon library two - ITS2

Finally, amplicon library two using the ITS3-KYO and ITS4-KYO3 primers for
ITS2:

[image: Sequence edit-graph for amplicon library two using ITS3-KYO and ITS4-KYO3 primers for ITS2.]
 [https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/amp_lib_two.ITS3-KYO2_ITS4-KYO3.edit-graph.a75.svg?sanitize=true]This is from file AL2.ITS3-KYO2_ITS4-KYO3.edit-graph.a75.xgmml
created by run.sh.

Some more noteworthy changes to presence/absence, including much more
Saccharomyces cerevisiae (still drawn bottom left). Also there are no
unexpected grey nodes, and perhaps most interestingly from a species
classification point of view, now the three Fusarium species fall into
separate connected components.





            

          

      

      

    

  

    
      
          
            
  
Presence and absence

This example is a controlled setup where we know what the classifier
ought ideally to report for every single sample.

We have replicated negative controls (which should have no marker
sequences present), and plenty of positive controls (which should
have the expected 19 species only).

Of course, just as in the original author’s analysis, not everything
we think was present is detected, and vice versa, lots of unwanted
things are detected. These kinds of controls are perfect for discussing
what to use as a minimum abundance threshold - how many reads do we
need to declare a species as present in a sample?


Negative controls

If you have called the provided setup.py to download the FASTQ files
and run.py to call THAPBI PICT, it would have used an optimistic
minimum abundance threshold of 10 copies of each unique sequence (the
default is a far more pesimitic 100).

This is not a good idea in general, but for your negative controls it
can be interesting to deliberately set no threshold, and accept any
sequence even if only supported by one read.

(Be sure to remove the intermediate FASTA files if you try this, as
otherwise THAPBI PICT would not replace the older higher threshold files).

If you do this, just how bad are the contamination levels? These little
tables were extracted manually from the sample level reports run with
-a 1 (accepting even sequences seen in only one read). The counts
are the total number of reads in each sample, while max is the highest
single sequence’s abundance.

Amplicon library one, ITS1 using the BITS/B58S3 primer pair, samples
replicated in duplicate:



	Description

	MiSeq-name

	Accession

	Count

	Max



	negative control from DNA extraction

	NegDNAA_S163

	SRR5314317

	112

	64



	negative control from DNA extraction

	NegDNAB_S175

	SRR5314316

	132

	101



	negative control from PCR step

	NegPCRA_S187

	SRR5314315

	1153

	1085



	negative control from PCR step

	NegPCRB_S104

	SRR5314314

	4343

	3961






Amplicon library two, ITS1 using the ITS1f/ITS2 primer pair:



	Description

	MiSeq-name

	Accession

	Count

	Max



	negative control with GoTaq

	NegCtlGoTq_S20

	SRR5838526

	2

	1



	negative control with Phusion

	NegCtlPhGn_S30

	SRR5838523

	8

	4



	negative control with reAmp

	NegCtlPrmp_S10

	SRR5838524

	9

	1






Amplicon library two, ITS2 using the ITS3‐KYO2 and ITS4‐KYO3 primer pair:



	Description

	MiSeq-name

	Accession

	Count

	Max



	negative control with GoTaq

	NegCtlGoTq_S20

	SRR5838526

	14

	2



	negative control with Phusion

	NegCtlPhGn_S30

	SRR5838523

	17

	4



	negative control with PreAmp

	NegCtlPrmp_S10

	SRR5838524

	5

	1






Looking at these numbers the levels in amplicon library two are commendably
low, at most four copies of any unique sequence - suggesting using a minimum
threshold of 10 here is quite reasonable.

Hereafter we will assume the minimum abundance threshold of 10 was used, and
you are encouraged to look at the sample or read level reports (e.g. in Excel)
while following along with this discussion.

However, the levels in amplicon library one are cause for concern.
Starting with the negative control from the DNA extraction (given a green
background in the Excel reports), we see both replicates had two unwanted
sequences. Look at summary/AL1.BITS-B58S3.reads.onebp.xlsx in Excel, or
the TSV version at the command line:

$ cut -f 1,2,7,35,36 summary/AL1.BITS-B58S3.reads.onebp.tsv | grep -v "[[:space:]]0[[:space:]]0$"
#                                               Sample-type      negative control     negative control
#                                               Group            from DNA extraction  from DNA extraction
#                                               Protocol         standard workflow    standard workflow
#                                               Condition        Neg_DNA              Neg_DNA
#                                               Replicate        1                    2
#                                               MiSeq-name       NegDNAA_S163         NegDNAB_S175
#                                               Raw FASTQ        12564                16297
#                                               Flash            11641                15829
#                                               Cutadapt         112                  131
#                                               Threshold pool   AL1                  AL1
#                                               Threshold        10                   10
#                                               Control          Sample               Sample
#                                               Max non-spike    64                   100
#                                               Singletons       14                   17
#                                               Accepted         98                   110
#                                               Unique           2                    2
#Marker       MD5                               Total-abundance  SRR5314317           SRR5314316
MAX or TOTAL  -                                 881219           64                   100
BITS-B58S3    d51507f661ebee38a85bec35b70b7ee1  47984            64                   100
BITS-B58S3    daadc4126b5747c43511bd3be0ea2438  34               34                   0
BITS-B58S3    e5b7a8b5dc0da33108cc8a881eb409f5  10               0                    10





Using a minimum of 10 has excluded lots of singletons etc here.

Both have d51507f661ebee38a85bec35b70b7ee1 as their more common unwanted
sequence, a perfect match to Fusarium graminearum in the mock community
(classifier summary column omitted above for a  clearer layout).

The lower abundance sequence daadc4126b5747c43511bd3be0ea2438 gives
perfect NCBI BLAST matches to several accessions of fungus Wallemia muriae,
likewise e5b7a8b5dc0da33108cc8a881eb409f5 gives perfect NCBI BLAST matches
to Wallemia muriae and Wallemia sebi. They have no match from the
classifier.

Moving on to the worst case, the negative control from the PCR reaction (given
a pale blue background in the Excel reports). Again, look at the Excel file,
or if working at the terminal:

$ cut -f 1,2,7,37,38 summary/AL1.BITS-B58S3.reads.onebp.tsv | grep -v "[[:space:]]0[[:space:]]0$"
#                                               Sample-type      negative control   negative control
#                                               Group            from PCR step      from PCR step
#                                               Protocol         standard workflow  standard workflow
#                                               Condition        Neg_PCR            Neg_PCR
#                                               Replicate        1                  2
#                                               MiSeq-name       NegPCRA_S187       NegPCRB_S104
#                                               Raw FASTQ        19406              7285
#                                               Flash            12140              6128
#                                               Cutadapt         1153               4340
#                                               Threshold pool   AL1                AL1
#                                               Threshold        10                 10
#                                               Control          Sample             Sample
#                                               Max non-spike    1085               3958
#                                               Singletons       42                 127
#                                               Accepted         1085               4014
#                                               Unique           1                  4
#Marker       MD5                               Total-abundance  SRR5314315         SRR5314314
MAX or TOTAL  -                                 881219           1085               3958
BITS-B58S3    d51507f661ebee38a85bec35b70b7ee1  47984            1085               3958
BITS-B58S3    716f6111ac2ee192c23282e07d23078a  31294            0                  25
BITS-B58S3    5194a4ae3a27d987892a8fee7b1669b9  17               0                  17
BITS-B58S3    702929cef71042156acb3a28270d8831  14               0                  14





The minimum abundance excluded lots of singletons etc. The vast majority of
those were slight variants of the dominant sequence, and can thus be explained
as PCR noise.

Again, both samples have d51507f661ebee38a85bec35b70b7ee1 as their main
(or only) unwanted sequence above the threshold, a perfect match to Fusarium
graminearum in the mock community.
Additionally 716f6111ac2ee192c23282e07d23078a matched Mortierella
verticillata from the mock community.

Then 5194a4ae3a27d987892a8fee7b1669b9 gives perfect NCBI BLAST matches to
fungus Trichosporon asahii and 702929cef71042156acb3a28270d8831 to fungus
Candida tropicalis, which are unexpected contamination.

I concur with the author that the high levels of Fusarium graminearum are
most likely cross-contamination from the mock-community samples:


Negative control samples in this sequencing run displayed some
contamination by F. graminearum. This taxon was represented at slightly,
but not dramatically, higher than expected relative abundances in the mock
community samples; some of the increase over expected relative abundance
may have been related to cross‐sample contamination.




Looking at the DNA extraction control alone, the THAPBI PICT default threshold
of 100 seems reasonable. However, if we set that aside the likely Fusarium
graminearum contamination, then the next worst contamination in any of these
four controls is at 32 copies, so you might argue 100 is a little harsh?

Certainly I think for amplicon library one, a threshold of 10 is too low, but
it could be defended for amplicon library two (where the controls had up to
four copies of an unwanted sequence).



Missing positive controls

We will look at the ratios later, but were all 19 species in the mock community
found? Perhaps the quickest way to answer this is to look at the classification
assessment output. At the command line, looking at the BLAST based classifier
as the most fuzzy of the three:

$ cut -f 1-5,9,11 summary/AL1.BITS-B58S3.assess.blast.tsv
<SEE TABLE BELOW>





Or open this in Excel. You should find:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	345

	5

	168

	71

	0.80

	0.334



	Alternaria alternata

	26

	0

	1

	4

	0.98

	0.037



	Aspergillus flavus

	25

	0

	2

	4

	0.96

	0.074



	Candida apicola

	27

	0

	0

	4

	1.00

	0.000



	Chytriomyces hyalinus

	0

	0

	27

	4

	0.00

	1.000



	Claviceps purpurea

	27

	0

	0

	4

	1.00

	0.000



	Fusarium graminearum

	27

	4

	0

	0

	0.93

	0.129



	Fusarium oxysporum

	27

	0

	0

	4

	1.00

	0.000



	Fusarium verticillioides

	0

	0

	27

	4

	0.00

	1.000



	Mortierella verticillata

	27

	1

	0

	3

	0.98

	0.036



	Naganishia albida

	27

	0

	0

	4

	1.00

	0.000



	Neosartorya fischeri

	24

	0

	3

	4

	0.94

	0.111



	Penicillium expansum

	22

	0

	5

	4

	0.90

	0.185



	Rhizoctonia solani

	19

	0

	8

	4

	0.83

	0.296



	Rhizomucor miehei

	0

	0

	27

	4

	0.00

	1.000



	Rhizophagus irregularis

	13

	0

	14

	4

	0.65

	0.519



	Saccharomyces cerevisiae

	0

	0

	27

	4

	0.00

	1.000



	Saitoella complicata

	27

	0

	0

	4

	1.00

	0.000



	Trichoderma reesei

	27

	0

	0

	4

	1.00

	0.000



	Ustilago maydis

	0

	0

	27

	4

	0.00

	1.000






Or, open this plain text tab separated Excel.

Five expected species were never found (FN with zero true positives) at the 10
reads abundance threshold: Chytriomyces hyalinus, Fusarium verticillioides,
Rhizomucor miehei, Saccharomyces cerevisiae and Ustilago maydis.

The author wrote:


Two of the expected 19 phylotypes, Fusarium verticillioides and
Saccharomyces cerevisiae, were not detected in any of the samples.
A large number of reads, presumably including many F. verticillioides
reads, were binned into a phylotype as unclassified Fusarium. The
primers used in ITS1 amplification for this sequencing library match
the rRNA gene sequence of S. cerevisiae. However, the expected ITS1
amplicon length is 402 bases for this taxon, compared to a range of
141‐330 bases across the remaining taxa in the mock community. Examining
the data at earlier stages of processing revealed that S. cerevisiae
was originally represented in the data set, but was completely removed
during quality screening (Table S3).

Chytriomyes hyalinus, Rhizomucor miehei and Ustilago maydis were
detected at dramatically lower abundances than expected. Each of these
taxa possesses sequence mismatches compared to the PCR primers that were
used. The number of mismatches to the forward and reverse primers was as
follows: for C. hyalinus, 2 and 1; for R. miehei, 0 and 2; and for
U. maydis, 2 and 1. Thus, selection against these taxa may have been
due to primer annealing efficiency.




That’s pretty consistent (we’ve talked about Fusarium verticillioides
earlier), and suggests using a minimum abundance threshold of 10 in THAPBI
PICT is a little stricter that the author’s pipeline.

Moving on to the second amplicon library, the larger ITS1 marker using the
ITS1f/ITS2 primer is more successful:

$ cut -f 1-5,9,11 summary/AL2.ITS1f-ITS2.assess.blast.tsv
<SEE TABLE BELOW>





Or open this in Excel. You should find:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	398

	0

	115

	57

	0.87

	0.224



	Alternaria alternata

	23

	0

	4

	3

	0.92

	0.148



	Aspergillus flavus

	27

	0

	0

	3

	1.00

	0.000



	Candida apicola

	12

	0

	15

	3

	0.62

	0.556



	Chytriomyces hyalinus

	25

	0

	2

	3

	0.96

	0.074



	Claviceps purpurea

	27

	0

	0

	3

	1.00

	0.000



	Fusarium graminearum

	27

	0

	0

	3

	1.00

	0.000



	Fusarium oxysporum

	27

	0

	0

	3

	1.00

	0.000



	Fusarium verticillioides

	12

	0

	15

	3

	0.62

	0.556



	Mortierella verticillata

	27

	0

	0

	3

	1.00

	0.000



	Naganishia albida

	27

	0

	0

	3

	1.00

	0.000



	Neosartorya fischeri

	23

	0

	4

	3

	0.92

	0.148



	Penicillium expansum

	24

	0

	3

	3

	0.94

	0.111



	Rhizoctonia solani

	24

	0

	3

	3

	0.94

	0.111



	Rhizomucor miehei

	4

	0

	23

	3

	0.26

	0.852



	Rhizophagus irregularis

	11

	0

	16

	3

	0.58

	0.593



	Saccharomyces cerevisiae

	9

	0

	18

	3

	0.50

	0.667



	Saitoella complicata

	27

	0

	0

	3

	1.00

	0.000



	Trichoderma reesei

	25

	0

	2

	3

	0.96

	0.074



	Ustilago maydis

	17

	0

	10

	3

	0.77

	0.370






Everything was found, although Rhizomucor miehei in particular found rarely,
followed by Saccharomyces cerevisiae. The original author wrote:


The ITS1 data set yielded 18 of the expected 19 taxa (Tables S3, S5); as
in the first library, no reads were classified as F. verticillioides,
although many reads were placed in unclassified Fusarium. Rhizomucor
miehei and S. cerevisiae were substantially underrepresented. Compared
to primers ITS1f and ITS2, R. miehei had three mismatches in the forward
and two mismatches in the reverse. Saccharomyces cerevisiae had one
mismatch in the forward primer and again likely suffered negative bias
associated with amplicon length (Table 3) and low sequence quality
(Table S3).




Again, broad agreement here, with the problem of Fusarium verticillioides
discussed earlier.

And finally, amplicon library two for ITS2 using the ITS3-KYO2 and ITS4-KYO3
primers:

$ cut -f 1-5,9,11 summary/AL2.ITS3-KYO2-ITS4-KYO3.assess.blast.tsv
<SEE TABLE BELOW>





Or open this in Excel. You should find:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	313

	0

	200

	57

	0.76

	0.390



	Alternaria alternata

	16

	0

	11

	3

	0.74

	0.407



	Aspergillus flavus

	24

	0

	3

	3

	0.94

	0.111



	Candida apicola

	0

	0

	27

	3

	0.00

	1.000



	Chytriomyces hyalinus

	0

	0

	27

	3

	0.00

	1.000



	Claviceps purpurea

	23

	0

	4

	3

	0.92

	0.148



	Fusarium graminearum

	27

	0

	0

	3

	1.00

	0.000



	Fusarium oxysporum

	27

	0

	0

	3

	1.00

	0.000



	Fusarium verticillioides

	27

	0

	0

	3

	1.00

	0.000



	Mortierella verticillata

	12

	0

	15

	3

	0.62

	0.556



	Naganishia albida

	27

	0

	0

	3

	1.00

	0.000



	Neosartorya fischeri

	16

	0

	11

	3

	0.74

	0.407



	Penicillium expansum

	23

	0

	4

	3

	0.92

	0.148



	Rhizoctonia solani

	11

	0

	16

	3

	0.58

	0.593



	Rhizomucor miehei

	0

	0

	27

	3

	0.00

	1.000



	Rhizophagus irregularis

	5

	0

	22

	3

	0.31

	0.815



	Saccharomyces cerevisiae

	27

	0

	0

	3

	1.00

	0.000



	Saitoella complicata

	26

	0

	1

	3

	0.98

	0.037



	Trichoderma reesei

	22

	0

	5

	3

	0.90

	0.185



	Ustilago maydis

	0

	0

	27

	3

	0.00

	1.000






This time we’re missing Candida apicola, Chytriomyces hyalinus,
Rhizomucor miehei and Ustilago maydis.

This too is in board agreement with the original author, although
Candida apicola must have just dipped below our abundance threshold.


Different amplification biases were evident between the ITS1 and ITS2
loci. In the ITS2 data set, only 16 of the 19 taxa that were present
could be detected; C. hyalinus, R. miehei and U. maydis were not
observed (Tables S3, S6). …
Rhizomucor miehei has one mismatch to the forward primer and three
mismatches to the reverse primer. While neither C. hyalinus nor
U. maydis have sequence mismatches compared to the primers, these two
taxa have longer ITS2 amplicons than any others in the mock community
(Table 3). These two taxa were originally represented with a small number
of reads in the raw data, but were completely removed during quality
screening (Table S3). Candida apicola, which possesses two mismatches
to the reverse primer for this amplicon, was detected at substantially
lower than expected frequencies (Figure 7; Figures S5, S6).




So, using THAPBI PICT on these amplicon datasets with a minimum abundance
threshold of 10 gives broad agreement with the original analysis.





            

          

      

      

    

  

    
      
          
            
  
Unexpected sequences

In the previous section, we highlighted several unexpected contaminants in the
negative controls which could not be explained as cross-contamination from the
mock community. Likewise the read reports show plenty of unassigned sequences,
things which did not match the very narrow databases built from ITS1.fasta
or ITS2.fasta containing markers expected from the mock community only.

Some unexpected sequences might reflect additional alternative copies of ITS1
or ITS2 in the genomes. Others are likely external contamination - after all
there are fungi practically everywhere. This seems to have happened on
amplicon library one in the high PCR cycle negative control at least.
Meanwhile, amplicon library two does not have any obvious external
contamination.


Amplicon library one - ITS1 (BITS/B58S3)

From the first amplicon library for ITS1 we saw the following sequences in the
negative controls (and by chance, not in any mock community samples) - shown
here with their highest single sample abundance, which supports using a
minimum abundance threshold higher than 10:



	MD5 checksum

	Max

	Species



	daadc4126b5747c43511bd3be0ea2438

	32

	Wallemia muriae



	e5b7a8b5dc0da33108cc8a881eb409f5

	10

	Wallemia muriae; Wallemia sebi



	5194a4ae3a27d987892a8fee7b1669b9

	17

	Trichosporon asahii



	702929cef71042156acb3a28270d8831

	14

	Candida tropicalis






Here are the reads from entries with a maximum sample abundance over 75
which the onebp and in some cases blast based classifier failed to
match, along with the most likely match from reviewing an online NCBI BLAST
search. You can easily extract these entries (and their sequences) from the
bottom of the summary/AL1_BITS_B58S3.reads.*.tsv files:



	MD5 checksum

	Max

	Species



	5ca0acd7dd9d76fdd32c61c13ca5c881

	4562

	Epicoccum nigrum; Epicoccum layuense



	ee5382b80607f0f052a3ad3c4e87d0ce

	575

	glomeromycetes, perhaps Rhizophagus



	880007c5a18be69c3f444efd144fc450

	236

	Ascochyta or Neoascochyta?



	8e74f38b058222c58943fc6211d277fe

	149

	Fusarium



	cae29429b90fc6539c440a140494aa25

	114

	glomeromycetes, perhaps Rhizophagus



	85775735614d45d056ce5f1b67f8d2b2

	109

	Fusarium






The sequence with the top abundance, 5ca0acd7dd9d76fdd32c61c13ca5c881,
perfectly matches fungus Epicoccum nigrum and Epicoccum layuense. Present
at low levels in multiple samples, this was the dominant sequence in
SRR5314339 aka FMockE.HC1_S178, which was a high PCR cycle number
replicate of the even mixture. Perhaps this was a stray fragment of
Epicoccum which by chance was amplified early in the PCR? This example was
not highlighted in the original paper, but is exactly the kind of thing you
should worry about with a high PCR cycle number.

Next ee5382b80607f0f052a3ad3c4e87d0ce and the less abundant sequence
cae29429b90fc6539c440a140494aa25 looks like glomeromycetes, perhaps
Rhizophagus (from the mock community), but could be from a Glomus species.
Using the blast classifier and the minimal curated reference set matches
this to Rhizophagus irregularis, but the situation would be ambiguous in a
more complete database.

Sequence 880007c5a18be69c3f444efd144fc450 has perfect matches to lots of
unclassified fungi, and conflicting perfect matches including Ascochyta or
Neoascochyta. This was seen only in the high PCR cycle number sample
SRR5314339 as above.

Next 8e74f38b058222c58943fc6211d277fe and
85775735614d45d056ce5f1b67f8d2b2 have good BLAST matches to several
different Fusarium species, so could also be from the mock community.

You can find all six of these sequence on the edit-graph, most as isolated grey
nodes along the bottom except cae29429b90fc6539c440a140494aa25 which is 3bp
away from Rhizophagus irregularis and linked to it with a dashed line.

So some of the ITS1 sequences in amplicon library one are likely external
contamination - particularly with the high PCR cycle negative control (which
was likely included exactly because of this risk).



Amplicon library two - ITS1 (ITS1f/ITS2)

Using our blast classifier with the 19 species database, everything was
assigned a match. The default onebp classifier was stricter. For example
while the very common f1b689ef7d0db7b0d303e9c9206ee5ad (which with the
BITS/B58S3 primers gave bb28f2b57f8fddefe6e7b5d01eca8aea) was matched to
Fusarium oxysporum, all the variations of this were too far away from the
database entries for a match.

These primers amplified a larger fragment to that in amplicon library one.
Focusing on those with a sample-abundance over 75 (as in the edit-graphs)
which the onebp classifier did not match to the curated reference set:



	Long sequence MD5 (ITS1f/ITS2).

	Max

	Species



	57b06dff740b38bd6a0375abd9db3972

	640

	glomeromycetes, perhaps Rhizophagus



	eed6e5c3881a233cca219f7ffd886bbe

	315

	glomeromycetes, perhaps Rhizophagus



	05007e829ab71427b49743994a14105f

	154

	glomeromycetes, perhaps Rhizophagus



	93b2d56429637947243e1b5d54a065cf

	132

	Fusarium



	610caedb1a5699836310fce9dbb9c5fa

	96

	Fusarium



	54aecb27334809f56b7f940b9ca060a3

	93

	Fusarium



	bd30cf52b7031ddd96e3d7588c1f0e1c

	90

	Fusarium



	c40cad2530d633430c3805be3740c9a4

	88

	Fusarium



	d44cd471b11f15e2e42070806737e5d1

	86

	Fusarium



	831acf596cca4ef840c5543d82e23d16

	82

	Fusarium



	d4145ba9e3ed6c8c2138ed15b147152d

	81

	Fusarium






You can find all of these sequence on the edit-graph, most of those labelled as
likely Fusarium are a 1bp edit away from large grey node f1b689 top left
(except 610caedb1a5699836310fce9dbb9c5fa which is an isolated node placed
bottom middle). Those labelled glomeromycetes are in the middle near, and in
once case connected to, a dark red Rhizophagus irregularis node.

i.e. None of the ITS1 sequences in amplicon library two are clear cut external
contamination.



Amplicon library two - ITS2

Finally, amplicon library two using the ITS3-KYO and ITS4-KYO3 primers for
ITS2. Again, the blast based classifier matched everything to an entry in
the mock community database. The stricter onebp classifier assigned most
reads. Here are those few it failed to match with a maximum read abundance
over 75:



	MD5 checksum

	Max

	Species



	d1bb95fff4a7e9958fa3c7f13cc51343

	211

	Fusarium



	2ef33e6acd8079d729b81d24b91fcf88

	133

	Fusarium



	8edbf2c168b11f910458b0e567ae5fc6

	78

	Aspergillus






These three all appears on the edit-graph separated from a red node (database
entry) by a dashed or dotted line indicating a 2bp or 3bp edit away.

Using an online NCBI BLAST search didn’t pin any of these down to species
level, but they do all seem to be fungi. Again, quite a few Fusarium matches
which could be alternative ITS2 sequences in the genomes but not in the
curated reference set. Likewise the Aspergillus like sequence could be from
the Aspergillus flavus in the mock community.

i.e. None of the ITS2 sequences in amplicon library two are clear cut external
contamination.





            

          

      

      

    

  

    
      
          
            
  
Great Lakes Mock Community 16S

This example is based on:


Klymus et al. (2017) Environmental DNA (eDNA) metabarcoding assays to
detect invasive invertebrate species in the Great Lakes.
https://doi.org/10.1371/journal.pone.0177643




Our main focus is 5 mock communities of 11 marine species in different ratios
(Table 2). The target amplicon copy number varies from trace level (14 reads)
to high copy number (9090 reads), making this an interesting example to
examine THAPBI PICT’s minimum read abundance setting.

Two different sets primers were used targeting overlapping regions of the
mtDNA 16S RNA marker gene, named MOL16S and SPH16S, which were sequenced
separately (and not as in some of the other examples pooled together for the
Illumina sequencing).

The full dataset includes aquarium and river environmental samples too, but
public sequence databases lack many of the sequences detected.



	Marker data

	Minimum Abundance Threshold

	Presence and absence

	Edit Graphs








            

          

      

      

    

  

    
      
          
            
  
Marker data

Either clone the THAPBI PICT source code repository, or decompress the
latest source code release (.tar.gz file). You should find it contains
a directory examples/great_lakes/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis
discussed.

Subdirectories MOL16S/ and SPH16S/ are used for the different
amplicons (with different primer settings and reference databases).


FASTQ data

File PRJNA379165.tsv was download from the ENA and includes the FASTQ
checksums, URLs, and sample metadata. Derived file metadata.tsv contains
report-ready metadata about the samples (see below).

Script setup.sh will download the raw FASTQ files for Klymus et al.
(2017) from https://www.ebi.ac.uk/ena/data/view/PRJNA379165

It will download 36 raw FASTQ files (18 pairs), taking 1.8GB on disk.

If you have the md5sum tool installed (standard on Linux), verify the FASTQ
files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
...
$ cd ../





There is no need to decompress the files.



Amplicon primers & reference sequences

The MOL16S amplicon targeted a short fragment of the mtDNA 16S RNA gene
using degenerate primer pair MOL16S_F/MOL16S_R (RRWRGACRAGAAGACCCT and
ARTCCAACATCGAGGT).

The SPH16S amplicon targeted sphaeriid mussel species where it amplified
an overlapping slightly downstream region of the mtDNA 16S RNA gene using
non-degenerate primers SPH16S_F/SPH16S_R (TAGGGGAAGGTATGAATGGTTTG and
ACATCGAGGTCGCAACC).

This means we need to run THAPBI PICT twice (once for each primer pair,
against a different marker database each time).



Metadata

The provided file metadata.tsv is based on metadata in the ENA, split into
separate columns for reporting. It has five columns:


	Run accession, e.g. “SRR5534972”


	Library name, e.g. “SC3PRO2”


	Sample title, e.g. “Mock Community 2 MOL16S with Fish Block Primer”


	Marker, “MOL16S” or “SPH16S”


	Group, “Mock Community”, “Aquarium”, “River” or “Control”




When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 4,5,3,2





Argument -t metadata.tsv says to use this file for the metadata.

Argument -c 4,5,3,2 says which columns to display and sort by. This means
Marker, Group, Sample Title, Library name. This splits up the samples first by
the expected marker, and then the group.

Argument -x 1 the filename stems can be found in that column one.



Other files

Files MOL16S.fasta and SPH16S.fasta are for building reference
databases. These were constructed from the accessions in the paper listed in
Table 1, Table 8, Supplementary Table 1, Supplementary Table 3, and some
additional accessions for the mock community. The sequences were primer
trimmed using cutadapt (requiring both the left and right primer to be
present), and the description given cut to just species level (discarding
strain or isolate information).





            

          

      

      

    

  

    
      
          
            
  
Minimum Abundance Threshold

THAPBI PICT has a default minimum absolute abundance threshold of 100 reads
per marker per sample, and 0.1% of the reads per marker per sample, before
accepting any unique sequence. Background contamination and PCR noise levels
will vary, so having multiple Abundance & Negative Controls will help set this
objectively.

In this dataset there is a single negative control for the MOL16S marker,
library BIM8M aka SRR5534986. However, we can also treat all the
SPH16S libraries as negative controls for the MOL16S marker, and vice versa.
You could do this automatically within THAPBI PICT via the -n or
--negctrls command line option, but as we shall see in this example it
will discard most of the data.

In order to examine an appropriate minimum abundance threshold, the run.sh
script provided uses -a 10 -f 0 to accept any unique sequence seen in
sample at least ten times (regardless the fraction of the sample read total).
This does allow unwanted noise though to the reports.


SPH16S

This was the more specific primer pair, expected to only amplify sphaeriid
mussel species, so in general we expect less unique sequences than with the
more general MOL16S primers.

Looking at some key columns in the sample report,

$ cut -f 1,2,4,7,9,14 summary/SPH16S.samples.onebp.tsv
<SEE TABLE BELOW>





Or, open SPH16S.samples.onebp.xlsx in Excel. Focusing on the left hand
columns, you should see:



	#Marker

	Group

	Library-name

	Raw FASTQ

	Cutadapt

	Accepted





	MOL16S

	Aquarium

	BIR2M

	306311

	2

	0



	MOL16S

	Aquarium

	BIR6M

	291954

	14

	0



	MOL16S

	Control

	BIM8M

	2433

	0

	0



	MOL16S

	Mock Community

	SC3PRO1

	689712

	17

	0



	MOL16S

	Mock Community

	SC3PRO2

	405048

	0

	0



	MOL16S

	Mock Community

	SC3PRO3

	402219

	16

	0



	MOL16S

	Mock Community

	NFSC3PRO3

	349590

	33

	10



	MOL16S

	Mock Community

	SC3PRO4

	671241

	6

	0



	MOL16S

	Mock Community

	NFSC3PRO4

	420015

	7

	0



	MOL16S

	Mock Community

	SC3PRO5

	480606

	13

	0



	MOL16S

	River

	BIM6M

	821849

	0

	0



	MOL16S

	River

	BIM2M

	1119271

	0

	0



	MOL16S

	River

	BIM4M

	709472

	40

	19



	SPH16S

	Aquarium

	BIR2S

	498926

	251148

	209402



	SPH16S

	Aquarium

	BIR6S

	240360

	226012

	191456



	SPH16S

	Mock Community

	SPSC3PRO1

	425271

	317960

	224689



	SPH16S

	Mock Community

	SPSC3PRO2

	341476

	282516

	204249



	SPH16S

	Mock Community

	SPSC3PRO4

	410780

	303957

	197507






Things to note:


	In the “Raw FASTQ” column, the control has far fewer raw reads (good).


	The “Cutadapt” column shows reads after SPH16S primer trimming. There are
hundreds of thousands for the final five samples amplified with these
primers (good). The first 13 samples were amplified with the MOL16S primers,
but still have low levels of sequences matching the SPH16S primers (bad).


	The “Read count” column is after applying the minimum abundance threshold
(here 10). Two negative controls still have reads, lifting the threshold
to 20 or more would fix this. These are Sphaerium simile in mock community
NFSC3PRO3, and an unknown in river sample BIM4M.




So, using the MOL16S samples as negative controls suggests that for the SPH16S
the default minimum abundance threshold is perhaps overly harsh - but using
at least 20 would be wise.



MOL16S

We’ll initially looking at the same key columns in the sample report,

$ cut -f 1,2,4,7,9,14 summary/MOL16S.samples.onebp.tsv
<SEE TABLE BELOW>





Or, open MOL16S.samples.onebp.xlsx in Excel. Focusing on the left hand
columns, you should see:



	#Marker

	Group

	Library-name

	Raw FASTQ

	Cutadapt

	Accepted





	MOL16S

	Aquarium

	BIR2M

	306311

	297657

	256386



	MOL16S

	Aquarium

	BIR6M

	291954

	286427

	256470



	MOL16S

	Control

	BIM8M

	2433

	1014

	551



	MOL16S

	Mock Community

	SC3PRO1

	689712

	656661

	550293



	MOL16S

	Mock Community

	SC3PRO2

	405048

	377026

	297877



	MOL16S

	Mock Community

	SC3PRO3

	402219

	380347

	304626



	MOL16S

	Mock Community

	NFSC3PRO3

	349590

	328956

	262963



	MOL16S

	Mock Community

	SC3PRO4

	671241

	628644

	494257



	MOL16S

	Mock Community

	NFSC3PRO4

	420015

	364233

	262726



	MOL16S

	Mock Community

	SC3PRO5

	480606

	458896

	383865



	MOL16S

	River

	BIM6M

	821849

	799349

	703578



	MOL16S

	River

	BIM2M

	1119271

	954787

	823782



	MOL16S

	River

	BIM4M

	709472

	367539

	317363



	SPH16S

	Aquarium

	BIR2S

	498926

	25

	0



	SPH16S

	Aquarium

	BIR6S

	240360

	27

	0



	SPH16S

	Mock Community

	SPSC3PRO1

	425271

	35

	0



	SPH16S

	Mock Community

	SPSC3PRO2

	341476

	168

	27



	SPH16S

	Mock Community

	SPSC3PRO4

	410780

	420

	108






Looking at the same points, I see two problems:


	The control sample BIM8M (SRR5534986) had almost a thousand unwanted MOL16S
matches, reduced to 551 with a minimum abundance threshold of 10.


	All the SPH16S mock community samples have unwanted MOS16S matches, the
worst case being SPSC3PRO4 (SRR5534980) with over four hundred reads reduced
to 108 with the minimum abundance threshold of 10.




To see exactly what is in these two problematic samples, we can turn to the
read report summary/MOL16S.reads.onebp.xlsx in Excel, or the TSV version
at the command line (using grep to drop the rows ending with a zero count):

$ cut -f 1,2,3,7,10 summary/MOL16S.reads.onebp.tsv | grep -v "[[:space:]]0$"
#                                                                  Marker           MOL16S
#                                                                  Group            Control
#                                                                  Sample           Blank MOL16S
#                                                                  Library-name     BIM8M
#                                                                  Raw FASTQ        2433
#                                                                  Flash            1963
#                                                                  Cutadapt         1014
#                                                                  Threshold pool   raw_data
#                                                                  Threshold        10
#                                                                  Control          Sample
#                                                                  Singletons       258
#                                                                  Accepted         551
#                                                                  Unique           4
#Marker       MD5                               onebp-predictions  Total-abundance  SRR5534986
MAX or TOTAL  -                                 -                  4914872          478
MOL16S        20c0669e4c6f8436c9d42736df727c83  Sphaerium simile   152924           478
MOL16S        e1d838b4f39bffe88d8c0e79b52700f1  Sphaerium simile   3215             13
MOL16S        778e3dace4b993135e11d450e6c559ff  Sphaerium simile   249              11
MOL16S        a36d3f7291c173c4243f22c2afbd111e  Sphaerium simile   147              49





The unwanted sequences in the control sample are dominated by a single
sequence (and three variants of it), which were matched to Sphaerium simile.

This is consistent with the original author’s analysis - although our pipeline
has produced higher read counts:


Finally, our water blank sample had 71 reads, eight of those being
singletons with the remaining belonging to Sphaerium striatinum
(Table 9), likely due to amplicon contamination in the lab.




What about the other problematic sample? Again, you can find this in the Excel
read report, or at the command line:

$ cut -f 1,2,7,25 summary/MOL16S.reads.onebp.tsv | grep -v "[[:space:]]0$"
#                                               Marker           SPH16S
#                                               Group            Mock Community
#                                               Sample           Mock Community 4 SPH16S
#                                               Library-name     SPSC3PRO4
#                                               Raw FASTQ        410780
#                                               Flash            375539
#                                               Cutadapt         420
#                                               Threshold pool   raw_data
#                                               Threshold        10
#                                               Control          Sample
#                                               Singletons       272
#                                               Accepted         108
#                                               Unique           3
#Marker       MD5                               Total-abundance  SRR5534980
MAX or TOTAL  -                                 4914872          46
MOL16S        ecdaa082b70f5e268f76128693531760  269109           45
MOL16S        98dc259e48de3e258cb93a34c38a9484  120026           17
MOL16S        20c0669e4c6f8436c9d42736df727c83  152924           46





The species names are too long to include in the above, listing them directly:

$ grep -E "(MD5|20c0669e4c6f8436c9d42736df727c83|ecdaa082b70f5e268f76128693531760|98dc259e48de3e258cb93a34c38a9484)" \
  summary/MOL16S.reads.onebp.tsv | cut -f 2,3
<SEE TABLE BELOW>





Giving:



	MD5

	onebp-predictions





	ecdaa082b70f5e268f76128693531760

	Dreissena bugensis;Dreissena rostriformis



	98dc259e48de3e258cb93a34c38a9484

	Dreissena polymorpha



	20c0669e4c6f8436c9d42736df727c83

	Sphaerium simile






The unwanted mock community sample content is split between Sphaerium and
Dreissena, and suggest using a minimum threshold of perhaps 50 reads?



Minimum threshold

Clearly using a minimum abundance threshold of 10 is too low, and it should be
increased to at perhaps 50 based on this. However, we have one exceptional
sequence present at almost 500 copies. Setting the minimum that high seems
excessive - but perhaps the THAPBI PICT default of 100 is more reasonable?





            

          

      

      

    

  

    
      
          
            
  
Presence and absence

This example includes mock communities which are a controlled setup where we
know what the classifier ought ideally to report for every sample - and all
their expected marker sequences are in the classification database.

The thapbi_pict assess command run via example script run.sh uses a
configuration file with all the mock community species for MOL16S, and the
three sphaeriid mussel species for SPH16S - regardless of the target copy
number in the mixture (see Klymus et al. (2017) Table 2), or
presence/absence of the fish block.

Of course, just as in the original author’s analysis, not everything we think
was present is detected. And vice versa, we see some things which are not
classified.


SPH16S

This was the more specific primer pair, expected to only amplify sphaeriid
mussel species, so in general we expect less unique sequences than with the
more general MOL16S primers.

Only three members of the mock community should match. Looking at the
summary/SPH16S.assess.onebp.tsv output file in Excel or at the
command line, when run at a minimum abundance threshold of 10, these are the
key numbers:

$ cut -f 1-5,9,11 summary/SPH16S.assess.onebp.tsv
<SEE TABLE BELOW>





Or open this in Excel. You should find:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	9

	5

	0

	656

	0.78

	0.357



	Pisidium compressum

	3

	0

	0

	7

	1.00

	0.000



	Sphaerium corneum

	3

	0

	0

	7

	1.00

	0.000



	Sphaerium nucleus

	0

	3

	0

	7

	0.00

	1.000



	Sphaerium simile

	3

	1

	0

	6

	0.86

	0.250



	Sphaerium striatinum

	0

	1

	0

	9

	0.00

	1.000



	OTHER 62 SPECIES IN DB

	0

	0

	0

	620

	0.00

	0.000






No false negatives (but we have set the threshold very low), but 5 false
positives: Three cases of Sphaerium nucleus, and one each of S. simile
and S. striatinum.

The S. nucleus matches are simply down to an ambiguous sequence in the
database from both this and expected species S. corneum. See also the output
from thapbi_pict conflicts -d SPH16S.sqlite which can report this.

The S. striatinum prediction came from SPSC3PRO1 aka SRR5534978, and
is down to several sequences one base pair away the expected S. simile
reference, but also one base pair away from an S. striatinum database entry.

We already discussed the trace level of 10 reads for Sphaerium simile in
mock community sample NFSC3PRO3 using the SOL16S primers. As suggested,
raising the minimum abundance threshold to at least 20 reads would solve this,
but the other false positives here are limitations of the reference set.



MOL16S

Looking at the summary/MOL16S.assess.onebp.tsv output file in
Excel or at the command line, when run at a minimum abundance threshold of 10,
these are the key numbers:

$ cut -f 1-5,9,11 summary/MOL16S.assess.onebp.tsv
<SEE TABLE BELOW>





Or open this in Excel. You should find:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	74

	23

	3

	1220

	0.85

	0.260



	Cipangopaludina chinensis

	7

	0

	0

	4

	1.00

	0.000



	Corbicula fluminea

	0

	1

	0

	10

	0.00

	1.000



	Dreissena bugensis

	0

	8

	0

	3

	0.00

	1.000



	Dreissena polymorpha

	7

	1

	0

	3

	0.93

	0.125



	Dreissena rostriformis

	7

	1

	0

	3

	0.93

	0.125



	Gillia altilis

	7

	0

	0

	4

	1.00

	0.000



	Melanoides tuberculata

	7

	0

	0

	4

	1.00

	0.000



	Mytilopsis leucophaeata

	7

	0

	0

	4

	1.00

	0.000



	Pisidium compressum

	7

	0

	0

	4

	1.00

	0.000



	Potamopyrgus antipodarum

	7

	0

	0

	4

	1.00

	0.000



	Sander vitreus

	4

	0

	3

	4

	0.73

	0.429



	Sphaerium corneum

	7

	1

	0

	3

	0.93

	0.125



	Sphaerium nucleus

	0

	8

	0

	3

	0.00

	1.000



	Sphaerium simile

	7

	2

	0

	2

	0.88

	0.222



	Sphaerium striatinum

	0

	1

	0

	10

	0.00

	1.000



	OTHER 105 SPECIES IN DB

	0

	0

	0

	1155

	0.00

	0.000






This time we do have false negatives - three of the seven samples are missing
Sander vitreus. Two of these are from Community 3 where this is intended to
be at only 14 copies, the third was SC3PRO2 aka SRR5534972 for Mock
Community 2 MOL16S with Fish Block Primer, with a target abundance of 72
copies. Here the fish block worked.

Again we have lots of false positives, mostly sister species which reflects
limitations of the reference set.

The exception is Corbicula fluminea. Referring to the sample summary report
MOL16S.samples.onebp.xlsx, this is from SC3PRO1 aka SRR5534973, and
at low abundance. This species was present in the aquaria sample sediment, but
as discussed in the paper did not amplify from there - so cross-contamination
seem less likely.



Unknowns

Looking at SPH16S.samples.onebp.xlsx and MOL16S.samples.onebp.xlsx
even our controls have unknown reads. To study these, next I’d look at the
edit-graphs.





            

          

      

      

    

  

    
      
          
            
  
Edit Graphs

The sequence Edit Graph is very useful for understanding what came off
the sequencer - although you may need to play with the thresholds to find a
sweet spot for hiding the noise. Using run.sh calls the pipeline with a
minimum abundance 10, which would give large noisy edit graphs. Instead, we
build them using a minimum abundance of 100, giving files
SPH16S.edit-graph.a100.xgmml and MOL16S.edit-graph.a100.xgmml, and
additional graphs for the mock community samples alone.

My main conclusion from the figures below is that the THAPBI PICT default
onebp classifier is reasonable for these mock communities markers.
However, the MOL16S database needs considerable expansion for use on the
environmental samples. Perhaps updating this example in 5 years time there
will be enough published markers to assign species to all the unknowns here?


SPH16S

First SPH16S, where there are just the three samples for the mock communities.
Each is expected to have three species Sphaerium simile, Sphaerium corneum
and Pisidium compressum only. With a minimum abundance threshold of 100, we
get three nice clear graph components, and a few single nodes:

[image: Sequence edit-graph for three SPH16S mock community samples, with minimum abundance 100.]
 [https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/great_lakes.mock.SPH16S.svg?sanitize=true]Next, using all the samples but again a sample level minimum abundance 100:

[image: SPH16S sequence edit-graph, with minimum abundance 100.]
 [https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/great_lakes.SPH16S.svg?sanitize=true]Very little change except the addition of a fourth cluster, some base pairs
away from the Sphaerium simile component and centred on this sequence:

>79b63a2ef96b839ae3263369f8d390b9
ACGTGGAAAAAACTGTCTCTTTTGTATAAAAAGAAGTTTATTTTTAAGTGAAAAAGCTTAAATGTTTATAAAAGACGAGA
AGACCCTATCGAACTTAAATTATTTGTTTAAATTTTTAAATAAAAAAAAGTTTAGTTGGGGAAACTTAAAGTAAAAAGTA
ACGCTTTATTTTTTTGTCAGGAGCCTGTAGTATGGAAAAATGAAAAAGTTACCGTAGGGATAACAGCGCTTTCTTCTCTG
AGAGGACTAATTAAAGAGTT





This is likely another Sphaerium species, NCBI BLAST suggests Sphaerium
striatinum - with AF152045.1 just two base pair away. This is in our
reference database file SPH16S.fasta:

>AF152045.1 Sphaerium striatinum
ACGTGGAAAAAACTGTCTCTTTTGTATAAAAAGAAGTTTATTTTTAAGTGAAAAAGCTTAAATGTTTATAAAAGACGAGA
AGACCCTATCGAACTTAAATTATTTGTTTAAATTTTTAAATAAAAAAAAGTTTAGTTGGGGAAACTTAAAGTAAAAATTA
ACGCTTTATTTTTTTGTCAGGAGCCTGTACTATGGAAAAATGAAAAAGTTACCGTAGGGATAACAGCGCTTTCTTCTCTG
AGAGGACTAATTAAAGAGTT







MOL16S

For MOL16S, starting with an edit graph of just the seven MOL16S samples, and
a minimum abundance threshold of 100, we see:

[image: Sequence edit-graph for seven MOL16S mock community samples, with minimum abundance 100.]
 [https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/great_lakes.mock.MOL16S.svg?sanitize=true]Four large components representing species with lots of variants, with red
central nodes in our database. Other less diverse graph components for the
remaining species, and a selection of isolated unknowns.

Next, using all the samples but again a sample level minimum abundance 100:

[image: MOL16S sequence edit-graph, with minimum abundance 100.]
 [https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/great_lakes.MOL16S.svg?sanitize=true]Suddenly we see dozens of new components, most of which have no references
(coloured nodes) representing likely unknown species.



Conclusion

I will close by quoting the end of Klymus et al. (2017):


The present study further demonstrates that metabarcoding data are only as
good as the sequence and taxonomic information provided on genetic
databases. Increased collaboration among taxonomists and molecular
systematists is required in order to gain maximum benefits of this
developing tool.




I agree - these markers seem to work, but there are still too many unknown
sequences.





            

          

      

      

    

  

    
      
          
            
  
Bat Mock Community COI

This example considers mock communities of 3 bat species (in different ratios)
using the COI marker, using one of the amplicon sequencing libraries from:


Walker et al. (2019)
A fecal sequel: Testing the limits of a genetic assay for bat species
identification.
https://doi.org/10.1371/journal.pone.0224969




The example highlights the importance of good database coverage with the
default onebp classifier method.



	Marker data

	Database of 430 bats

	Pooling








            

          

      

      

    

  

    
      
          
            
  
Marker data

Either clone the THAPBI PICT source code repository, or decompress the
latest source code release (.tar.gz file). You should find it contains
a directory examples/fecal_sequel/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis
discussed.


FASTQ data

File PRJNA574765 was download from the ENA and includes the FASTQ
checksums, URLs, and the key metadata. Related file metadata.tsv
contains report-ready metadata about the samples (see below).

Script setup.sh will download the raw FASTQ files for Walker et al.
(2019) from https://www.ebi.ac.uk/ena/data/view/PRJNA574765

It will download 120 raw FASTQ files (60 pairs), taking about 641MB on disk

If you have the md5sum tool installed (standard on Linux), verify the FASTQ
files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
...
$ cd ..





There is no need to decompress the files.

We focus on bioproject PRJNA574765 which has 60 samples and covers the mock
communities. Additionally the paper describes PRJNA525109 (41 samples
comparing genetic efficacy vs traditional survey techniques), and PRJNA525407
(9 samples looking at bat species assemblages in archaeological sites in
Belize, with an expanded reference set).



Amplicon primers & reference sequences

The primer pair is SFF_145f (GTHACHGCYCAYGCHTTYGTAATAAT) and SFF_351r
(CTCCWGCRTGDGCWAGRTTTCC).

The reference set of COI sequences is taken from Supplementary S2 in the
preceding paper (which also included bioproject PRJNA325503 with 9 samples):


Walker et al. (2016)
Species From Feces: Order-Wide Identification of Chiroptera From Guano and
Other Non-Invasive Genetic Samples.
https://doi.org/10.1371/journal.pone.0162342




File COI_430_bats.fasta of pre-trimmed bat COI markers is generated by
setup.sh by downloading the FASTA file from Walker et al. (2016)
Supplementary S2, with underscores replaced with spaces in the record names.

Provided file observed_3_bats.fasta contains alternative COI markers
observed in at least 10 samples, and their assumed species source. This is
for discussing the effect of the database.



Metadata

The provided file metadata.tsv is based on PRJNA574765 but breaks up
the sample name into separate columns:


	Accession, assigned by the public archive, e.g. “SRR10198789”


	Rare, which of the 3 species is at low abundance, “COTO”, “EPFU” or “TABR”.


	Ratio, either “1:64” (rare) or “1:192” (very rare)


	Replicate, “01” to “10” (leading zero for alphabetical sorting)




The four letter appreviations are Corynorhinus townsendii (COTO),
Eptesicus fuscus (EPFU) and Tadarida brasiliensis (TABR).

When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 2,3,4





Argument -t metadata.tsv says to use this file for the metadata.

The -x 1 argument indicates the filename stem can be found in column 1,
Accession.

Argument -c 2,3,4 says which columns to display and sort by (do not
include the indexed column again). i.e. Rare species, ratio, replicate.

We have not given a -g argument to assign colour bands in the Excel
reports, so it will default to the first column in -c, meaning we get
three coloured bands for “COTO”, “EPFU” and “TABR”.



Other files

File mock_community.known.tsv describes the three species of bats expected
in the mock communities (which use different ratios).





            

          

      

      

    

  

    
      
          
            
  
Database of 430 bats

The mock communities of 3 bats in Walker et al. (2019) are made up of just
Corynorhinus townsendii (COTO), Eptesicus fuscus (EPFU) and Tadarida
brasiliensis (TABR). Following their analysis, we will use the same 430 bat
species for our reference database, available as a FASTA file of COI trimmed
markers as Supplementary S2 to the earlier paper Walker et al. (2016).

Running setup.sh will download that FASTA file as COI_430_bats.fasta,
and we can load this into a new THAPBI PICT database using:

$ rm -rf COI_430_bats.sqlite  # delete any pre-existing DB
$ thapbi_pict import -k COI \
  --left GTHACHGCYCAYGCHTTYGTAATAAT --right CTCCWGCRTGDGCWAGRTTTCC \
  -d COI_430_bats.sqlite -i COI_430_bats.fasta -x
File COI_430_bats.fasta had 430 sequences, of which 430 accepted.
Of 430 potential entries, loaded 430 entries, 0 failed parsing.





Here we have named the new marker COI, and recorded the SFF_145f/SFF_351r
primer pair. Calling run.sh will first run the pipeline using this COI
database and primers, and the metadata as described earlier. This will
make an edit-graph named summary/430_bats.COI.edit-graph.xgmml
which you can open in Cytoscape. This contains three main connected components
for the three expected species, and a smattering of singletons and other tiny
clusters. The -k or --marker option was used to  force inclusion of
the database entries (even if not seen in the samples).

Importantly, only the Eptesicus fuscus cluster includes a red node from the
database which is also in the samples. i.e. None of the sequence data from
Corynorhinus townsendii or Tadarida brasiliensis perfectly matches the
given reference species sequence. The three main clusters are shown below:

[image: Sequence edit-graph for 3 bats mock community using, only given 430 reference sequences.]
 [https://raw.githubusercontent.com/peterjc/thapbi-pict/master/docs/images/bats_a100_430db.svg?sanitize=true]All three clusters have species labelled nodes. Starting on the left, we have
Tadarida brasiliensis where the reference is a one base pair edit away from
the dominant variant (seen in 27 samples). In the middle we have Eptesicus
fuscus where while the reference sequence was seen, once again it is not a
dominant variant (two variants were seen in 40 samples). Finally, on the right
for Corynorhinus townsendii the reference is a one base pair edit away from
the two dominant variants (seen in 40 and 23 samples).

This is a severe handicap for the default onebp classifier which looks
for identical matches or up to a single base pair different. We can either
switch to a fuzzier classifier (like the blast based classifier), or look
at filling in the database.

One option would be to add a (curated subset of) published sequences from the
NCBI. At the time of writing while that helps, there are still gaps here. What
the example in run.sh does is add all the sequences observed in at least
10 samples to the database with the presumed species. This is similar to how
the THAPBI PICT default database of Phytophthora ITS1 contains actually
observed variants from single species positive controls. It ceases to be an
entirely fair assessment, but comparing the Excel reports from the two
database the improvement is quite dramatic.

Looking at summary/430_bats.COI.samples.onebp.xlsx (430 references
only) compared to summary/ext_bats.COI.samples.onebp.xlsx (with an
extra 14 sequences added), the Tadarida brasiliensis detection improves
markedly (although is still spotted in only two of the 20 replicates where it
is the rare species - consistent with the published analysis and put down to
primer preference), and also there are far less unknown reads reported.




            

          

      

      

    

  

    
      
          
            
  
Pooling

This is a nice example to show the pooling script included with THAPBI PICT,
here pooling on the first two columns of the sample report:

$ ../../scripts/pooling.py -i summary/430_bats.COI.samples.onebp.tsv -c 1,2
<SEE TABLE BELOW>





You can specify an output stem like -o pooled and get pooled.tsv and
matching pooled.xlsx files, but by default the plain text table is printed
to the terminal:



	Rare

	Ratio

	Samples-sequenced

	Corynorhinus townsendii

	Eptesicus fuscus

	Tadarida brasiliensis

	Unknown





	COTO

	1:192

	10

	58948

	99888

	82587

	19059



	COTO

	1:64

	10

	45632

	51977

	0

	148446



	EPFU

	1:192

	10

	99840

	9668

	103545

	21191



	EPFU

	1:64

	10

	91018

	52574

	21507

	65809



	TABR

	1:192

	10

	149636

	73958

	1563

	52279



	TABR

	1:64

	10

	128019

	106581

	773

	50833






As discussed earlier, where Corynorhinus townsendii (COTO) is the rare
species at a 1:64 ratio there is no Tadarida brasiliensis matched with the
initial database, but it is found with the extended database:

$ ../../scripts/pooling.py -i summary/ext_bats.COI.samples.onebp.tsv  -c 1,2
<SEE TABLE BELOW>





Again, shown as a table:



	Rare

	Ratio

	Samples-sequenced

	Corynorhinus townsendii

	Eptesicus fuscus

	Tadarida brasiliensis

	Unknown





	COTO

	1:192

	10

	61727

	100185

	92815

	5755



	COTO

	1:64

	10

	70121

	68495

	101333

	6106



	EPFU

	1:192

	10

	100822

	9668

	108264

	15490



	EPFU

	1:64

	10

	91242

	68322

	67690

	3654



	TABR

	1:192

	10

	154907

	98791

	1563

	22175



	TABR

	1:64

	10

	133876

	140456

	773

	11101






One of the options in this script is -b or --boolean for a yes/no
summary rather than showing the sum of the reads:

$ ../../scripts/pooling.py -i summary/ext_bats.COI.samples.onebp.tsv  -c 1,2 -b
<SEE TABLE BELOW>





All three species (and unknowns) are found in at least one of the 10 samples
sequenced in each of the six groups:



	Rare

	Ratio

	Samples-sequenced

	Corynorhinus townsendii

	Eptesicus fuscus

	Tadarida brasiliensis

	Unknown





	COTO

	1:192

	10

	Y

	Y

	Y

	Y



	COTO

	1:64

	10

	Y

	Y

	Y

	Y



	EPFU

	1:192

	10

	Y

	Y

	Y

	Y



	EPFU

	1:64

	10

	Y

	Y

	Y

	Y



	TABR

	1:192

	10

	Y

	Y

	Y

	Y



	TABR

	1:64

	10

	Y

	Y

	Y

	Y






In the Excel output the species labels are rotated 90 degrees allowing a very
compact display.




            

          

      

      

    

  

    
      
          
            
  
Synthetic controls with fungal ITS2

Here we consider some environmental fungi, mock communities, and a synthetic
spike-in control using some of the Illumina data from the following paper:


Palmer et al. (2018) Non-biological synthetic spike-in controls and the
AMPtk software pipeline improve mycobiome data.
https://doi.org/10.7717/peerj.4925
https://www.ebi.ac.uk/ena/data/view/PRJNA305924




The mock communities have known composition, while the synthetic control has
a mix of 12 artificial sequences which can be easily distinguished from the
biological ITS2 sequences.



	Marker data

	Minimum Abundance Threshold








            

          

      

      

    

  

    
      
          
            
  
Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest
source code release (.tar.gz file). You should find it contains a
directory examples/synthetic_mycobiome/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis
discussed.


FASTQ data

File PRJNA305924.tsv was download from the ENA and includes the FASTQ
checksums, URLs, and sample metadata (not just for the files we will be using,
but additional Illumina MiSeq runs, and Ion Torrent data too).

Script setup.sh will download the raw FASTQ files for two of the Illumina
MiSeq runs described in Palmer et al. (2018)
from https://www.ebi.ac.uk/ena/data/view/PRJNA305924

It will download 42 raw FASTQ files (21 pairs), taking about 4.8 GB on disk.

If you have the md5sum tool installed (standard on Linux), verify the
FASTQ files downloaded correctly:

$ cd ..
$ md5sum -c MD5SUM.txt
...
$ cd ..





There is no need to decompress the files.



Amplicon primers & reference sequences

A region of ITS2 was amplified using the fITS7/ITS4 primer pair
(GTGARTCATCGAATCTTTG and TCCTCCGCTTATTGATATGC) with an average
product length of 264bp using public fungal sequences.

The file references.fasta we provide is based on amptk_mock2.fa and
amptk_mock3.fa from the authors’ GitHub repository
<https://github.com/nextgenusfs/amptk/tree/master/amptk/DB>, but formatted
suitable for direct import into our tool with primer-trimmed sequences.

Additional file environment.fasta contains selected close matches to
sequences from the environmental samples in the NCBI found with BLASTN
against the NT database.



Metadata

File metadata.tsv is based on the ENA metadata and the paper text. It has
four columns:


	run_accession, assigned by the public archive, e.g. “SRR7109326”


	library_name, with sequencing run as a prefix, e.g. “m6-stds” or “m6-301-1”


	sample_alias, as used in the paper, e.g. “BioMockStds” or “301-1”


	group, human readable sample type, e.g. “Biological Mock” or “Environment”


	read_count, the number of read pairs in the FASTQ files




When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 3,4





Argument -t metadata.tsv says to use this file for the metadata.

Argument -c 3,4 says which columns to display and sort by. This means
sample alias, then group.

Argument -x 1 (default, so not needed) indicates the filename stem can be
found in column 1, run accession.



Other files

Provided files BioMockStds.known.tsv, BioMock.known.tsv, and
SynMock.known.tsv list the expected 25 species, 22 species, and 12
synthetic controls expected in the mock samples. Folder expected/ is
created linking accession names to the appropriate species for assessing the
classifier performance.

Sub-folder intermediate/ITS2/ is used for intermediate files, in general
there is a sub-folder for each primer-pair.





            

          

      

      

    

  

    
      
          
            
  
Minimum Abundance Threshold

With less samples multiplexed per sample than our own work (which guided the
default settings), these samples were sequenced at much higher depth:

$ cut -f 1,2,5 metadata.tsv
<SEE TABLE BELOW>





As a table:



	run_accession

	library_name

	read_count





	SRR7109326

	m6-stds

	817764



	SRR7109327

	m6-301-1

	890561



	SRR7109328

	m6-mock3-32000b

	943839



	SRR7109329

	m6-766-1

	840068



	SRR7109330

	m6-744-2

	704173



	SRR7109331

	m6-500-1

	911793



	SRR7109341

	m6-712-2

	872265



	SRR7109342

	m6-500-2

	879762



	SRR7109343

	m6-757-1

	903886



	SRR7109344

	m6-757-2

	1210627



	SRR7109345

	m6-mock3-16000

	922440



	SRR7109406

	m6-712-1

	897159



	SRR7109408

	m6-744-1

	778090



	SRR7109409

	m6-mock3-32000a

	1125275



	SRR7109411

	m6-766-2

	785776



	SRR7109412

	m6-755-1

	957067



	SRR7109414

	m6-736-1

	998817



	SRR7109415

	m6-301-2

	1181567



	SRR7109417

	m6-755-2

	1071829



	SRR7109418

	m6-736-2

	919363



	SRR7109420

	m6-SynMock

	1299238






The defaults are an absolute abundance threshold of 100, and a fractional
threshold of 0.1% (i.e. -a 100 -f 0.001). After merging overlapping reads
and primer matching we could expect over 650,000 reads per m6 sample, giving a
threshold over 650 reads.

So, with this coverage the default fractional abundance threshold of 0.1%
(i.e. -f 0.001) makes the default absolute abundance threshold of 100
(i.e. -a 100) redundant. However, on this dataset our defaults are quite
cautious, and control samples can help set thresholds objectively.

In this dataset there is a single synthetic control for m6 sequencing run,
library SynMock aka SRR7109420. We can tell THAPBI PICT at the command
line to use this to set the fractional abundance threshold via -y or
--synctrls, and/or set the absolute abundance threshold via -n or
--negctrls (with a list of control file names). It turns out however that
with the default thresholds the control is clean (no unwanted non-synthetic
ITS2 reads).


Using the defaults

The first step in run.sh is to run the pipeline with the default abundance
thresholds (stricter than the alternatives analyses below), giving just a few
hundred unique ITS2 sequences:

$ grep -c "^ITS2" summary/defaults.ITS2.tally.tsv
360
$ grep -c "^ITS2" summary/defaults.ITS2.reads.1s5g.tsv
360





Look at summary/defaults.ITS2.samples.1s5g.xlsx or working at the command
line with the TSV file:

$ cut -f 1,7,9,11-12,14-15 summary/defaults.ITS2.samples.1s5g.tsv
<SEE TABLE BELOW>





As a table:



	#sample_alias

	Cutadapt

	Threshold

	Max non-spike

	Max spike-in

	Accepted

	Unique





	301-1

	807956

	808

	348111

	0

	528957

	38



	301-2

	1108129

	1109

	457440

	0

	778850

	31



	500-1

	819468

	820

	289229

	0

	516474

	30



	500-2

	813470

	814

	214155

	0

	529967

	34



	712-1

	820146

	821

	131937

	0

	533310

	56



	712-2

	796363

	797

	299240

	0

	520290

	34



	736-1

	943427

	944

	349965

	0

	669563

	36



	736-2

	854919

	855

	282132

	0

	609025

	25



	744-1

	706659

	707

	358089

	0

	493209

	20



	744-2

	651528

	652

	136471

	0

	452421

	36



	755-1

	887650

	888

	462493

	0

	616322

	27



	755-2

	982087

	983

	589120

	0

	669602

	17



	757-1

	835431

	836

	281533

	0

	578198

	35



	757-2

	1099959

	1100

	224635

	0

	742540

	28



	766-1

	792260

	793

	526535

	0

	583643

	16



	766-2

	711176

	712

	251097

	0

	469397

	26



	BioMock

	866253

	867

	56120

	0

	591947

	23



	BioMock

	846519

	847

	65686

	0

	585715

	23



	BioMock

	1023231

	1024

	84748

	0

	698170

	22



	BioMockStds

	736334

	737

	35300

	0

	521693

	26



	SynMock

	1199806

	1200

	0

	103014

	862950

	18






The SynMock control is clean, no non-spike-in reads passed the default
abundance thresholds.

So, there is scope to lower the default thresholds - but how low? We will start
by reproducing the Illumina part of Figure 6, which was based on the m6 MiSeq
sequencing run. This figure explores tag-switching in the demultiplexing, and
in the authors’ analysis goes as low as 5 reads.



Excluding only singletons

The run.sh example continues by running the pipeline on the m6 dataset with
-f 0 -a 2 to accept everything except singletons (sequences which are only
seen once in a sample; including them gives about ten times as many unique
sequences which slows everything down). Also, this analysis does not use the
synthetic control to raise the threshold on the rest of the samples - we want
to see any low level mixing. We then can compare our sample report against
Figure 6.

Looking at the unique reads in the FASTA file, tally table, or in the reads
report with metadata, we have nearly 200 thousand ITS2 sequences:

$ grep -c "^ITS2" summary/a2.ITS2.tally.tsv
196480
$ grep -c "^ITS2" summary/a2.ITS2.reads.onebp.tsv
196480





Look at summary/a2.ITS2.samples.onebp.xlsx or working at the command line
with the TSV file:

$ cut -f 1,5-7,11-12,14-15 summary/a2.ITS2.samples.onebp.tsv
<SEE TABLE BELOW>





As a table:



	#sample_alias

	Raw FASTQ

	Flash

	Cutadapt

	Max non-spike

	Max spike-in

	Accepted

	Unique





	301-1

	890561

	812674

	807956

	348111

	0

	687950

	12638



	301-2

	1181567

	1113606

	1108129

	457440

	0

	977003

	13319



	500-1

	911793

	823392

	819468

	289229

	0

	689174

	14249



	500-2

	879762

	817277

	813470

	214155

	0

	699634

	12851



	712-1

	897159

	823034

	820146

	131937

	0

	703189

	17574



	712-2

	872265

	800475

	796363

	299240

	0

	683057

	13937



	736-1

	998817

	948348

	943427

	349965

	15

	834461

	12993



	736-2

	919363

	858915

	854919

	282132

	0

	757097

	9625



	744-1

	778090

	710762

	706659

	358089

	0

	614988

	7936



	744-2

	704173

	654661

	651528

	136471

	0

	564238

	8650



	755-1

	957067

	891942

	887650

	462493

	15

	782052

	12142



	755-2

	1071829

	987280

	982087

	589120

	0

	848793

	10587



	757-1

	903886

	839105

	835431

	281533

	0

	725057

	12729



	757-2

	1210627

	1105530

	1099959

	224635

	0

	950457

	15819



	766-1

	840068

	794475

	792260

	526535

	0

	712126

	7519



	766-2

	785776

	714894

	711176

	251097

	0

	606887

	11189



	BioMock

	943839

	872263

	866253

	56120

	0

	744007

	17274



	BioMock

	922440

	859262

	846519

	65686

	0

	733784

	16676



	BioMock

	1125275

	1047383

	1023231

	84748

	3

	884514

	18416



	BioMockStds

	817764

	740627

	736334

	35300

	0

	628576

	17202



	SynMock

	1299238

	1204532

	1199806

	187

	103014

	1043525

	14234






Here SynMock (SRR7109420) is the synthetic control, and it has some
non-spike-in reads present, the most abundant at 187 copies. Conversely,
samples 755-1 (SRR7109412), 736-1 (SRR7109414), and one of the
BioMock samples (SRR7109409) have trace levels of unwanted synthetic
spike-in reads, the most abundant at 15, 15 and 3 copies respectively. The
counts differ, but these are all samples highlighted in Figure 6 (sharing the
same Illumina i7 or i5 index for multiplexing). We don’t see this in the other
BioMock samples, but our pipeline appears slightly more stringent.

As percentages, 187/1199806 gives 0.0156% which is nearly ten times lower than
our default of 0.1%. The numbers the other way round are all even lower,
15/462496 gives 0.003%, 15/349965 gives 0.004%, and 3/1023234 gives 0.003%.



Using the synthetic control

Next the run.sh example uses the SynMock synthetic control to
automatically raise the fractional abundance threshold from zero to 0.015% by
including -a 100 -f 0 -y raw_data/SRR7109420_*.fastq.gz in the command line.
This brings down the unique sequence count enough to just over three thousand,
allowing use of a slower but more lenient classifier as well:

$ grep -c "^ITS2" summary/ctrl.ITS2.tally.tsv
3097
$ grep -c "^ITS2" summary/ctrl.ITS2.reads.1s5g.tsv
3097





Look at summary/ctrl.ITS2.samples.1s5g.xlsx or working at the command line
with the TSV file:

$ cut -f 1,7,9,11-12,14-15 summary/ctrl.ITS2.samples.1s5g.tsv
<SEE TABLE BELOW>





Note we now get a threshold column showing the absolute threshold applied to
each sample (using the inferred percentage), all above the absolute default of
100. You can see the total accepted read count has dropped, and the number of
unique sequences accepted has dropped even more dramatically:



	#sample_alias

	Cutadapt

	Threshold

	Max non-spike

	Max spike-in

	Accepted

	Unique





	301-1

	807956

	126

	348111

	0

	579502

	262



	301-2

	1108129

	173

	457440

	0

	829870

	189



	500-1

	819468

	128

	289229

	0

	568336

	228



	500-2

	813470

	127

	214155

	0

	578432

	215



	712-1

	820146

	128

	131937

	0

	569100

	181



	712-2

	796363

	125

	299240

	0

	570488

	243



	736-1

	943427

	148

	349965

	0

	708900

	183



	736-2

	854919

	134

	282132

	0

	653753

	220



	744-1

	706659

	111

	358089

	0

	540597

	273



	744-2

	651528

	102

	136471

	0

	472785

	129



	755-1

	887650

	139

	462493

	0

	694273

	340



	755-2

	982087

	154

	589120

	0

	754928

	338



	757-1

	835431

	131

	281533

	0

	610579

	171



	757-2

	1099959

	172

	224635

	0

	781212

	142



	766-1

	792260

	124

	526535

	0

	648524

	301



	766-2

	711176

	111

	251097

	0

	508838

	205



	BioMock

	866253

	136

	56120

	0

	607401

	77



	BioMock

	846519

	132

	65686

	0

	603186

	82



	BioMock

	1023231

	160

	84748

	0

	718660

	85



	BioMockStds

	736334

	115

	35300

	0

	526317

	48



	SynMock

	1199806

	100

	187

	103014

	885051

	113






Note that Palmer et al. (2018) apply a threshold to individual sequences,
but the thresholding strategy in THAPBI PICT applies the fractional threshold
to all the samples (given in the same sub-folder as input, so you can separate
your MiSeq runs, or your PCR plates, or just apply a global threshold).

In fact, looking at the read report summary/ctrl.ITS2.reads.1s5g.tsv it is
clear that while this threshold may have excluded Illumina tag-switching, it
has not excluded PCR noise - there are hundreds of low abundance sequences
unique to a single sample. To address that we would have to use a considerably
higher threshold, and the default 0.1% is a reasonable choice here, or apply a
denoising algorithm like UNOISE.



Threshold selection

Excluding only singletons is too lenient, but how does the the synthetic
control inferred threshold (0.0156%) compare to the default (0.1%)?

Here are the classifier assessment values using the lower inferred threshold
which allows a lot of PCR noise:

$ head -n 2 summary/ctrl.ITS2.assess.1s5g.tsv
<SEE TABLE BELOW>





As a table:



	#Species

	TP

	FP

	FN

	TN

	sensitivity

	specificity

	precision

	F1

	Hamming-loss

	Ad-hoc-loss





	OVERALL

	102

	11

	1

	186

	0.99

	0.94

	0.90

	0.94

	0.0400

	0.105






Versus the stricter higher default abundance fraction which excludes most of
the PCR noise:

$ head -n 2 summary/defaults.ITS2.assess.1s5g.tsv
<SEE TABLE BELOW>





As a table:



	#Species

	TP

	FP

	FN

	TN

	sensitivity

	specificity

	precision

	F1

	Hamming-loss

	Ad-hoc-loss





	OVERALL

	92

	8

	11

	189

	0.89

	0.96

	0.92

	0.91

	0.0633

	0.171






You could use the assessment metrics to help decide on your preferred
threshold, depending on the best tradeoff for your use-case.

Personally, of the these two I would pick the higher default threshold
since it appears to exclude lots of PCR noise as seen in the edit graphs.
With the default 0.1% threshold:

[image: Sequence edit-graph, with default $0.1\%$ abundance threshold, showing 360 ASVs.]
 [https://user-images.githubusercontent.com/63959/175536233-1036c5f9-ba94-4382-9843-973885b6960f.svg]Using the lower threshold there are roughly ten times as many ASVs.
The more common ASV nodes become the centre of a halo of 1bp variants,
typically each seen in a single sample, which we attribute to PCR noise:

[image: Sequence edit-graph, with synthetic control inferred $0.0156\%$ abundance threshold, showing 3097 ASVs.]
 [https://user-images.githubusercontent.com/63959/175536267-b77fc035-d366-453d-b064-28ce63f11bcd.svg]The best choice of threshold may lie somewhere in between?



Read-correction for denoising

Read-correction is an alternative or supplement to a stringent abundance filter
for removing the noise of sequence variants presumed to be PCR artefacts. Use
--denoise as part of the pipeline or sample-tally commands to enable our
implementation of the UNOISE algorithm [https://www.drive5.com/usearch/manual/unoise_algo.html] (Edgar 2016).

Adding this to the control-driven abundance threshold example drops the total
unique read count from over 3 thousand to just over 700:

$ grep -c "^ITS2" summary/ctrl_denoise.ITS2.tally.tsv
704
$ grep -c "^ITS2" summary/ctrl_denoise.ITS2.reads.1s5g.tsv
704





This gives an edit graph visually somewhere in between the examples above,
with the obvious variant halos collapsed, but some of the more complex chains
of variants still present.

In terms of classifier assessment on the mock community, there is no change:

$ head -n 2 summary/ctrl_denoise.ITS2.assess.1s5g.tsv
<SEE TABLE BELOW>





As a table:



	#Species

	TP

	FP

	FN

	TN

	sensitivity

	specificity

	precision

	F1

	Hamming-loss

	Ad-hoc-loss





	OVERALL

	102

	11

	1

	186

	0.99

	0.94

	0.90

	0.94

	0.0400

	0.105






Looking at the reports, the read counts are of course different, but also some
of the reads assigned a genus-only classification have been removed via the
read-correction, so the taxonomy output does not directly match up either.





            

          

      

      

    

  

    
      
          
            
  
Soil Nematode Mock Community

Here we consider a mock community of over 20 soil nematodes (in triplicate),
sequeced separately with four markers, with no-template PCR control blanks:


Ahmed et al. (2019) Metabarcoding of soil nematodes: the importance of
taxonomic coverage and availability of reference sequences in choosing
suitable marker(s)
https://doi.org/10.3897/mbmg.3.36408
https://www.ebi.ac.uk/ena/data/view/PRJEB27581




This example requires creating a database covering the four different marker
primers and known sequences (all of which ought to be properly curated).



	Marker data

	High level overview

	Presence and absence








            

          

      

      

    

  

    
      
          
            
  
Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest
source code release (.tar.gz file). You should find it contains a
directory examples/soil_nematodes/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis
discussed.


FASTQ data

File PRJEB27581.tsv was download from the ENA and includes the FASTQ
checksums, URLs, and sample metadata.

Script setup.sh will download the raw FASTQ files for Ahmed et al. (2019)
from https://www.ebi.ac.uk/ena/data/view/PRJEB27581

It will download 32 raw FASTQ files (16 pairs), taking 12GB on disk.

If you have the md5sum tool installed (standard on Linux), verify the FASTQ
files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
...
$ cd ../





There is no need to decompress the files.



Amplicon primers & reference sequences

There were four separate markers used here, as shown in the paper’s Table 2
together with the shared Illumina adaptors used.

The authors do not provide copies of their reference sequence databases with
the paper. Instead, files NF1-18Sr2b.fasta, SSUF04-SSUR22.fasta,
D3Af-D3Br.fasta and JB3-JB5GED.fasta were based on the accessions
listed in the paper and close matches in the NCBI found with BLASTN against
the NT database. Note many of the species names have been reduced to just
“Genus sp.” in line with the mock community entries, and all the fungal
entries are listed as just “Fungi”.



Metadata

File metadata.tsv is based on the ENA metadata and the paper text. It has
four columns:


	run_accession, assigned by the public archive, e.g. “ERR2678656”


	read_count, the number of paired reads in the raw FASTQ files.


	sample, one of “MC1”, “MC2”, “MC3” for the mock communities, or “Blank”


	marker, one of “NF1-18Sr2b”, “SSUF04-SSUR22”, “D3Af-D3Br” or “JB3-JB5GED”




When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 4,3





Argument -t metadata.tsv says to use this file for the metadata.

Argument -c 4,3 says which columns to display and sort by. This means
sample and then marker. The purpose here is to group the samples logically
(sorting on accession would not work), and suitable for group colouring.

Argument -x 1 (default, so not needed) indicates the filename stem can be
found in column 1, run accession.



Other files

The provided negative_control.known.tsv and mock_community.known.tsv
files lists the expected species in the negative controls (none) and the mock
community samples (the same 23 species). Sub-folders under expected/ are
created for each primer-pair, linking each accession name to either file as
appropriate for assessing the classifier performance.

Sub-folders under intermediate/ are used for intermediate files, a folder
for each primer-pair.





            

          

      

      

    

  

    
      
          
            
  
High level overview

The high level summary is that all the samples have high coverage, much higher
than most of the examples we have used. The coverage also varies between
samples - making a fractional minimum abundance threshold attractive here.
There is minimal off target signal (from the other primer sets), and the no
template blanks have lower yields. The read counts in the blanks are high, but
happily do not appear to contain nematode sequence.


Per-marker yield

We’ll start by looking at the number of read-pairs found for each marker.
After calling ./run.sh you should be able to inspect these report files
at the command line or in Excel.

$ cut -f 1,2,5-7,9,12 summary/NF1-18Sr2b.samples.onebp.tsv
<SEE TABLE BELOW>





Or open the Excel version summary/NF1-18Sr2b.samples.onebp.xlsx, and focus
on those early columns:



	#marker

	sample

	Raw FASTQ

	Flash

	Cutadapt

	Threshold

	Accepted





	D3Af-D3Br

	Blank

	1193593

	1039205

	0

	25

	0



	D3Af-D3Br

	MC1

	3897994

	3317661

	0

	25

	0



	D3Af-D3Br

	MC2

	4228233

	3685150

	0

	25

	0



	D3Af-D3Br

	MC3

	4309817

	3864130

	0

	25

	0



	JB3-JB5GED

	Blank

	69641

	62060

	0

	25

	0



	JB3-JB5GED

	MC1

	1236201

	1157824

	0

	25

	0



	JB3-JB5GED

	MC2

	2160885

	2058441

	1

	25

	0



	JB3-JB5GED

	MC3

	1204900

	1139777

	0

	25

	0



	NF1-18Sr2b

	Blank

	260778

	218813

	187776

	25

	140063



	NF1-18Sr2b

	MC1

	2483453

	2126062

	2109488

	25

	1394883



	NF1-18Sr2b

	MC2

	2349364

	1985981

	1972923

	25

	1359884



	NF1-18Sr2b

	MC3

	2435278

	2088185

	2070379

	25

	1409844



	SSUF04-SSUR22

	Blank

	57199

	46879

	0

	25

	0



	SSUF04-SSUR22

	MC1

	3162379

	2633321

	77

	25

	0



	SSUF04-SSUR22

	MC2

	2790363

	2370732

	280

	25

	0



	SSUF04-SSUR22

	MC3

	1953138

	1640045

	52

	25

	0






You should find the raw FASTQ numbers match the author’s Table 5, although
that omits the blanks - which happily are all much lower.

The “Flash” column reports how many of those raw FASTQ read pairs could be
overlap merged into a single sequence - and our numbers range from 82% to 95%
(it is easy to add this calculation in Excel). This is very different from the
author’s results in Table 6, although we agree that the best yield was with
the JB3-JB5GED markers. Exploring the flash settings here, using -O or
--allow-outies was important here to maximize yield, but that alone does
not explain this discrepancy.

The “Cutadapt” column reports how many of those merged reads could be primer
trimmed with the NF1-18Sr2b primers, and happily we get high numbers only for
the NF1-18Sr2b samples, but low levels from the other samples. That could be
barcode leakage in the demultiplexing, or actual unwanted DNA in the samples.

Then we have our “Threshold” and the final column highlighted here is the
“Read count” after applying our minimum abundance threshold - and now we only
get reads from the NF1-18Sr2b samples. These are all 25 specified at the
command line with -a 25 in the script, and -f 0 to disable the
fractional abundance threshold. This was done to reduce the false negatives
in the mock communities to be more in line with the original analysis.

We can repeat this for the other three primer sets, and the same pattern is
observed - strong signal only for the matching samples (with the blanks giving
strong but lower counts), and all non-matching samples zero after the minimum
abundance threshold is applied.



Blank controls

The excellent news is even at this (much lower than default) minimum abundance
threshold there are no recognisable nematode sequences in any of the blanks.

Looking at the same sample reports (or the more detailed read reports), we
see that while the blank samples with no PCR template control give lots of
reads, where they can be identified the organisms are not seen in the mock
communities. Quoting the paper:


Blank samples only yielded sequences of fungi and streptophyta.




In our case, we found lots of fungi and also the genus Urtica (which is a
green plant under streptophyta), but also some Blastocystis (Stramenopiles),
Cercomonas (Rhizaria) and Sphaerularioidea (Opisthokonta).

$ for MARKER in NF1-18Sr2b SSUF04-SSUR22 D3Af-D3Br JB3-JB5GED; do \
  grep $MARKER.Blank summary/$MARKER.samples.onebp.tsv | cut -f 1,2,4; \
  done
<SEE TABLE EXCERPT BELOW>





Or manually looking at the four separate files - where column 4 is a text
summary of the classifier output:



	NF1-18Sr2b

	Blank

	Fungi (unknown species), Urtica sp., Unknown



	SSUF04-SSUR22

	Blank

	Blastocystis sp., Fungi (unknown species), Unknown



	D3Af-D3Br

	Blank

	Cercomonas sp., Fungi (unknown species), Sphaerularioidea gen. sp. EM-2016, Unknown



	JB3-JB5GED

	Blank

	Unknown






It should stressed that all the blank samples have unknown sequences (indeed
the JB3-JB5GED blank sequences are all reported as unknown).





            

          

      

      

    

  

    
      
          
            
  
Presence and absence

As discussed in the paper, the recognised species recovered from the mock
community varied dramatically by marker. This example has been setup with
the same list of 23 species expected for all the markers.

Note that three of the four reference sets lack a known sequence for
Laimaphelenchus penardi, and most are missing more than just that species.

The run.sh script runs a classifier assessment over all the samples which
is meaningful for the pooled results. There is then a loop to assess each
marker individually on the four relevant samples only.

We can compare these results to Ahmed et al. (2019) Table 9.


NF1-18Sr2b

This marker has the best database coverage.

$ cut -f 1-5,9,11 summary/NF1-18Sr2b.assess.onebp.tsv
<SEE TABLE BELOW>





Or open this in Excel. You should find:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	52

	60

	17

	191

	0.57

	0.597



	Acrobeles sp.

	0

	0

	3

	1

	0.00

	1.000



	Acrobeloides sp.

	2

	0

	1

	1

	0.80

	0.333



	Alaimus sp.

	1

	0

	2

	1

	0.50

	0.667



	Anaplectus sp.

	0

	0

	3

	1

	0.00

	1.000



	Anatonchus tridentatus

	3

	0

	0

	1

	1.00

	0.000



	Aphelenchoides sp.

	3

	0

	0

	1

	1.00

	0.000



	Aporcelaimellus sp.

	3

	0

	0

	1

	1.00

	0.000



	Criconema sp.

	2

	0

	1

	1

	0.80

	0.333



	Ditylenchus dipsaci

	3

	0

	0

	1

	1.00

	0.000



	Ditylenchus weischeri

	0

	3

	0

	1

	0.00

	1.000



	Globodera achilleae

	0

	3

	0

	1

	0.00

	1.000



	Globodera artemisiae

	0

	3

	0

	1

	0.00

	1.000



	Globodera mexicana

	0

	3

	0

	1

	0.00

	1.000



	Globodera pallida

	0

	3

	0

	1

	0.00

	1.000



	Globodera rostochiensis

	3

	0

	0

	1

	1.00

	0.000



	Globodera sp.

	0

	3

	0

	1

	0.00

	1.000



	Globodera tabacum

	0

	3

	0

	1

	0.00

	1.000



	Hemicycliophora sp.

	1

	0

	2

	1

	0.50

	0.667



	Laimaphelenchus penardi

	3

	0

	0

	1

	1.00

	0.000



	Longidorus caespiticola

	3

	0

	0

	1

	1.00

	0.000



	Meloidogyne cf. hapla 8 JH-2014

	0

	3

	0

	1

	0.00

	1.000



	Meloidogyne ethiopica

	0

	3

	0

	1

	0.00

	1.000



	Meloidogyne hapla

	3

	0

	0

	1

	1.00

	0.000



	Meloidogyne incognita

	0

	3

	0

	1

	0.00

	1.000



	Plectus sp.

	3

	0

	0

	1

	1.00

	0.000



	Prionchulus cf. punctatus TSH-2005

	0

	2

	0

	2

	0.00

	1.000



	Prionchulus muscorum

	0

	2

	0

	2

	0.00

	1.000



	Prionchulus punctatus

	2

	0

	1

	1

	0.80

	0.333



	Pristionchus sp.

	3

	0

	0

	1

	1.00

	0.000



	Rhabditis sp.

	3

	0

	0

	1

	1.00

	0.000



	Steinernema carpocapsae

	3

	0

	0

	1

	1.00

	0.000



	Steinernema monticolum

	0

	3

	0

	1

	0.00

	1.000



	Steinernema sp.

	0

	3

	0

	1

	0.00

	1.000



	Steinernema websteri

	0

	3

	0

	1

	0.00

	1.000



	Trichodorus primitivus

	3

	0

	0

	1

	1.00

	0.000



	Tripyla daviesae

	0

	3

	0

	1

	0.00

	1.000



	Tripyla glomerans

	0

	0

	3

	1

	0.00

	1.000



	Tripyla sp.

	0

	3

	0

	1

	0.00

	1.000



	Tylenchus sp.

	3

	0

	0

	1

	1.00

	0.000



	Urtica sp.

	0

	1

	0

	3

	0.00

	1.000



	Xiphinema bakeri

	0

	2

	0

	2

	0.00

	1.000



	Xiphinema coxi europaeum

	0

	2

	0

	2

	0.00

	1.000



	Xiphinema diversicaudatum

	2

	0

	1

	1

	0.80

	0.333



	Xiphinema japonicum

	0

	2

	0

	2

	0.00

	1.000



	Xiphinema pseudocoxi

	0

	2

	0

	2

	0.00

	1.000



	Xiphinema vuittenezi

	0

	2

	0

	2

	0.00

	1.000



	OTHER 34 SPECIES IN DB

	0

	0

	0

	136

	0.00

	0.000






We have explainable false positives as within genus conflicts in
Ditylenchus, Globodera, Meloidogyne, Steinernema,
Prionchulus, Tripyla, and Xiphinema. Note expected species Tripyla
glomerans is not reported.

Additionally there is an unexplained FP from plant Urtica sp. in the blank
sample.

We also have false negatives, including reporting Anatonchus sp. rather than
Anatonchus tridentatus, no Acrobeles sp. in any of the three samples, and
a few more not appearing in all the samples.

This is not performing as well as the authors’ analysis:


The NF1-18Sr2b had the highest coverage, producing 100% recovery of the
sampled taxa (Table 9). All 23 taxa were detected in all three replicates,
apart from Acrobeles and Criconema. They both failed to appear in one
of the replicates.




Perhaps our abundance threshold is still too high?



SSUF04-SSUR22

The assess command here warns the DB lacks 10 of the expected species in
the mock community, which are therefore false negatives.

$ cut -f 1-5,9,11 summary/SSUF04-SSUR22.assess.onebp.tsv
<SEE TABLE BELOW>





Or open this in Excel. You should find:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	32

	6

	37

	37

	0.60

	0.573



	Acrobeles sp.

	0

	0

	3

	1

	0.00

	1.000



	Acrobeloides sp.

	2

	0

	1

	1

	0.80

	0.333



	Alaimus sp.

	3

	0

	0

	1

	1.00

	0.000



	Anaplectus sp.

	3

	0

	0

	1

	1.00

	0.000



	Anatonchus tridentatus

	3

	0

	0

	1

	1.00

	0.000



	Aphelenchoides sp.

	0

	0

	3

	1

	0.00

	1.000



	Aporcelaimellus sp.

	3

	0

	0

	1

	1.00

	0.000



	Blastocystis sp.

	0

	1

	0

	3

	0.00

	1.000



	Criconema sp.

	0

	0

	3

	1

	0.00

	1.000



	Ditylenchus dipsaci

	0

	0

	3

	1

	0.00

	1.000



	Globodera rostochiensis

	0

	0

	3

	1

	0.00

	1.000



	Hemicycliophora sp.

	0

	0

	3

	1

	0.00

	1.000



	Laimaphelenchus penardi

	0

	0

	3

	1

	0.00

	1.000



	Longidorus caespiticola

	3

	0

	0

	1

	1.00

	0.000



	Meloidogyne hapla

	0

	0

	3

	1

	0.00

	1.000



	Plectus sp.

	3

	0

	0

	1

	1.00

	0.000



	Prionchulus muscorum

	0

	3

	0

	1

	0.00

	1.000



	Prionchulus punctatus

	3

	0

	0

	1

	1.00

	0.000



	Prionchulus sp.

	0

	2

	0

	2

	0.00

	1.000



	Pristionchus sp.

	0

	0

	3

	1

	0.00

	1.000



	Rhabditis sp.

	0

	0

	3

	1

	0.00

	1.000



	Steinernema carpocapsae

	3

	0

	0

	1

	1.00

	0.000



	Trichodorus primitivus

	3

	0

	0

	1

	1.00

	0.000



	Tripyla glomerans

	0

	0

	3

	1

	0.00

	1.000



	Tylenchus sp.

	0

	0

	3

	1

	0.00

	1.000



	Xiphinema diversicaudatum

	3

	0

	0

	1

	1.00

	0.000



	OTHER 2 SPECIES IN DB

	0

	0

	0

	8

	0.00

	0.000






There are false positives within the genus Prionchulus (wrong species), and
also from Blastocystis sp. in the blank.

We have TP for 11 species only. The original analysis reported recovering 15
out of 23 species with this marker (Table 9), and wrote:


In the case of the SSUF04-SSUR22 marker, eight taxa were missing from all
three assignment methods. The taxa that were recovered occurred in all three
replicates. With all three methods of taxonomy assignment combined, the
number of correctly assigned OTUs improved to 56.




Many of our false negatives are likely due to the database coverage, with
the Table 9 noting the majority of their reference sequences from NCBI RefSeq
were partial - our pipeline requires full length reference amplicons.



D3Af-D3Br

The assess command here warns the DB lacks three of the expected species in
the mock community, Criconema sp., Laimaphelenchus penardi, and
Steinernema carpocapsae - which are therefore false negatives.

$ cut -f 1-5,9,11 summary/D3Af-D3Br.assess.onebp.tsv
<SEE TABLE BELOW>





Or open this in Excel. You should find:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	42

	17

	27

	98

	0.66

	0.512



	Acrobeles sp.

	2

	0

	1

	1

	0.80

	0.333



	Acrobeloides sp.

	0

	0

	3

	1

	0.00

	1.000



	Alaimus sp.

	0

	0

	3

	1

	0.00

	1.000



	Anaplectus sp.

	0

	0

	3

	1

	0.00

	1.000



	Anatonchus tridentatus

	3

	0

	0

	1

	1.00

	0.000



	Aphelenchoides sp.

	0

	0

	3

	1

	0.00

	1.000



	Aporcelaimellus sp.

	3

	0

	0

	1

	1.00

	0.000



	Cercomonas sp.

	0

	1

	0

	3

	0.00

	1.000



	Criconema sp.

	0

	0

	3

	1

	0.00

	1.000



	Ditylenchus dipsaci

	3

	0

	0

	1

	1.00

	0.000



	Globodera pallida

	0

	3

	0

	1

	0.00

	1.000



	Globodera rostochiensis

	3

	0

	0

	1

	1.00

	0.000



	Globodera sp.

	0

	3

	0

	1

	0.00

	1.000



	Hemicycliophora sp.

	1

	0

	2

	1

	0.50

	0.667



	Laimaphelenchus deconincki

	0

	3

	0

	1

	0.00

	1.000



	Laimaphelenchus penardi

	0

	0

	3

	1

	0.00

	1.000



	Longidorus caespiticola

	3

	0

	0

	1

	1.00

	0.000



	Meloidogyne hapla

	3

	0

	0

	1

	1.00

	0.000



	Plectus sp.

	3

	0

	0

	1

	1.00

	0.000



	Prionchulus punctatus

	3

	0

	0

	1

	1.00

	0.000



	Pristionchus sp.

	3

	0

	0

	1

	1.00

	0.000



	Rhabditis sp.

	3

	0

	0

	1

	1.00

	0.000



	Sphaerularioidea gen. sp. EM-2016

	0

	1

	0

	3

	0.00

	1.000



	Steinernema carpocapsae

	0

	0

	3

	1

	0.00

	1.000



	Trichodorus primitivus

	3

	0

	0

	1

	1.00

	0.000



	Tripyla glomerans

	3

	0

	0

	1

	1.00

	0.000



	Tylenchus sp.

	0

	0

	3

	1

	0.00

	1.000



	Xiphinema bakeri

	0

	2

	0

	2

	0.00

	1.000



	Xiphinema diversicaudatum

	3

	0

	0

	1

	1.00

	0.000



	Xiphinema japonicum

	0

	2

	0

	2

	0.00

	1.000



	Xiphinema sp.

	0

	2

	0

	2

	0.00

	1.000



	OTHER 15 SPECIES IN DB

	0

	0

	0

	60

	0.00

	0.000






Most of the false positives are within the genus Globodera or Xiphinema,
but additionally Cercomonas sp. and Sphaerularioidea gen. sp. EM-2016.
Note Laimaphelenchus deconincki is reported instead of the expected
Laimaphelenchus penardi here.

We have 15 species correctly identified (11 from all three samples), which
exceeds authors’ analysis with UTAX but falls short of their consensus:


The 28S rDNA-based D3Af-D3Br marker assigned 70 OTUs to nematodes and
recovered all taxa except Criconema in the consensus taxonomy. Amongst
the recovered taxa, Hemicycliophora occurred in one of the replicates,
Acrobeles in two, while the rest were found in all three replicates.




Note that as per the paper Table 1, accessions MG994941 and MG994928 were
used for Anatonchus tridentatus and Tripyla glomerans, but required 34 and
35bp 3’ extensions respectively to cover the D3Af-D3Br amplicon (missing
sequenced inferred from the observed reads, and matches other nematode
sequences).



JB3-JB5GED

The assess command here warns the DB lacks 20 of the expected species in the
mock community, which puts the results into perspective:

$ cut -f 1-5,9,11 summary/JB3-JB5GED.assess.onebp.tsv
<SEE TABLE BELOW>





Or open this in Excel. You should find:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	9

	3

	60

	24

	0.22

	0.875



	Acrobeles sp.

	0

	0

	3

	1

	0.00

	1.000



	Acrobeloides sp.

	0

	0

	3

	1

	0.00

	1.000



	Alaimus sp.

	0

	0

	3

	1

	0.00

	1.000



	Anaplectus sp.

	0

	0

	3

	1

	0.00

	1.000



	Anatonchus tridentatus

	0

	0

	3

	1

	0.00

	1.000



	Aphelenchoides sp.

	0

	0

	3

	1

	0.00

	1.000



	Aporcelaimellus sp.

	0

	0

	3

	1

	0.00

	1.000



	Criconema sp.

	0

	0

	3

	1

	0.00

	1.000



	Ditylenchus dipsaci

	0

	0

	3

	1

	0.00

	1.000



	Globodera rostochiensis

	3

	0

	0

	1

	1.00

	0.000



	Hemicycliophora sp.

	0

	0

	3

	1

	0.00

	1.000



	Laimaphelenchus penardi

	0

	0

	3

	1

	0.00

	1.000



	Longidorus caespiticola

	0

	0

	3

	1

	0.00

	1.000



	Meloidogyne hapla

	3

	0

	0

	1

	1.00

	0.000



	Plectus sp.

	0

	0

	3

	1

	0.00

	1.000



	Prionchulus punctatus

	0

	0

	3

	1

	0.00

	1.000



	Pristionchus sp.

	0

	0

	3

	1

	0.00

	1.000



	Rhabditis sp.

	0

	0

	3

	1

	0.00

	1.000



	Steinernema abbasi

	0

	3

	0

	1

	0.00

	1.000



	Steinernema carpocapsae

	3

	0

	0

	1

	1.00

	0.000



	Trichodorus primitivus

	0

	0

	3

	1

	0.00

	1.000



	Tripyla glomerans

	0

	0

	3

	1

	0.00

	1.000



	Tylenchus sp.

	0

	0

	3

	1

	0.00

	1.000



	Xiphinema diversicaudatum

	0

	0

	3

	1

	0.00

	1.000






This has performed perfectly on Meloidogyne hapla, Globodera rostochiensis,
and Steinernema carpocapsae - although we also get false positive matches to
sister species Steinernema abbasi.

This is better than the authors analysis, which did not find Globodera:


For the COI-based JB3-JB5GED marker, even the consensus taxonomy drawn from
all three assignment methods could only recover two taxa, namely Meloidogyne
and Steinernema.






Pooled

The pipeline is setup to assess the pooled results expecting all 23 species in
each mock community, regardless of which marker was being sequenced. i.e. This
is handicapped by adding up to 9 false negatives per species.

$ cut -f 1-5,9,11 summary/pooled.assess.onebp.tsv
<SEE TABLE BELOW>





Or open this in Excel. You should find:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	135

	86

	141

	1142

	0.54

	0.627



	Acrobeles sp.

	2

	0

	10

	4

	0.29

	0.833



	Acrobeloides sp.

	4

	0

	8

	4

	0.50

	0.667



	Alaimus sp.

	4

	0

	8

	4

	0.50

	0.667



	Anaplectus sp.

	3

	0

	9

	4

	0.40

	0.750



	Anatonchus tridentatus

	9

	0

	3

	4

	0.86

	0.250



	Aphelenchoides sp.

	3

	0

	9

	4

	0.40

	0.750



	Aporcelaimellus sp.

	9

	0

	3

	4

	0.86

	0.250



	Blastocystis sp.

	0

	1

	0

	15

	0.00

	1.000



	Cercomonas sp.

	0

	1

	0

	15

	0.00

	1.000



	Criconema sp.

	2

	0

	10

	4

	0.29

	0.833



	Ditylenchus dipsaci

	6

	0

	6

	4

	0.67

	0.500



	Ditylenchus weischeri

	0

	3

	0

	13

	0.00

	1.000



	Globodera achilleae

	0

	3

	0

	13

	0.00

	1.000



	Globodera artemisiae

	0

	3

	0

	13

	0.00

	1.000



	Globodera mexicana

	0

	3

	0

	13

	0.00

	1.000



	Globodera pallida

	0

	6

	0

	10

	0.00

	1.000



	Globodera rostochiensis

	9

	0

	3

	4

	0.86

	0.250



	Globodera sp.

	0

	6

	0

	10

	0.00

	1.000



	Globodera tabacum

	0

	3

	0

	13

	0.00

	1.000



	Hemicycliophora sp.

	2

	0

	10

	4

	0.29

	0.833



	Laimaphelenchus deconincki

	0

	3

	0

	13

	0.00

	1.000



	Laimaphelenchus penardi

	3

	0

	9

	4

	0.40

	0.750



	Longidorus caespiticola

	9

	0

	3

	4

	0.86

	0.250



	Meloidogyne cf. hapla 8 JH-2014

	0

	3

	0

	13

	0.00

	1.000



	Meloidogyne ethiopica

	0

	3

	0

	13

	0.00

	1.000



	Meloidogyne hapla

	9

	0

	3

	4

	0.86

	0.250



	Meloidogyne incognita

	0

	3

	0

	13

	0.00

	1.000



	Plectus sp.

	9

	0

	3

	4

	0.86

	0.250



	Prionchulus cf. punctatus TSH-2005

	0

	2

	0

	14

	0.00

	1.000



	Prionchulus muscorum

	0

	5

	0

	11

	0.00

	1.000



	Prionchulus punctatus

	8

	0

	4

	4

	0.80

	0.333



	Prionchulus sp.

	0

	2

	0

	14

	0.00

	1.000



	Pristionchus sp.

	6

	0

	6

	4

	0.67

	0.500



	Rhabditis sp.

	6

	0

	6

	4

	0.67

	0.500



	Sphaerularioidea gen. sp. EM-2016

	0

	1

	0

	15

	0.00

	1.000



	Steinernema abbasi

	0

	3

	0

	13

	0.00

	1.000



	Steinernema carpocapsae

	9

	0

	3

	4

	0.86

	0.250



	Steinernema monticolum

	0

	3

	0

	13

	0.00

	1.000



	Steinernema sp.

	0

	3

	0

	13

	0.00

	1.000



	Steinernema websteri

	0

	3

	0

	13

	0.00

	1.000



	Trichodorus primitivus

	9

	0

	3

	4

	0.86

	0.250



	Tripyla daviesae

	0

	3

	0

	13

	0.00

	1.000



	Tripyla glomerans

	3

	0

	9

	4

	0.40

	0.750



	Tripyla sp.

	0

	3

	0

	13

	0.00

	1.000



	Tylenchus sp.

	3

	0

	9

	4

	0.40

	0.750



	Urtica sp.

	0

	1

	0

	15

	0.00

	1.000



	Xiphinema bakeri

	0

	4

	0

	12

	0.00

	1.000



	Xiphinema coxi europaeum

	0

	2

	0

	14

	0.00

	1.000



	Xiphinema diversicaudatum

	8

	0

	4

	4

	0.80

	0.333



	Xiphinema japonicum

	0

	4

	0

	12

	0.00

	1.000



	Xiphinema pseudocoxi

	0

	2

	0

	14

	0.00

	1.000



	Xiphinema sp.

	0

	2

	0

	14

	0.00

	1.000



	Xiphinema vuittenezi

	0

	2

	0

	14

	0.00

	1.000



	OTHER 41 SPECIES IN DB

	0

	0

	0

	656

	0.00

	0.000






As expected from the per-marker results, the false positives are largely due
to species level difficulties within the genera including Globodera,
Steinernema, Tripyla, and Xiphinema.

While many of the number of false negatives may be down to database coverage,
it would also be worth exploring further dropping the minimum abundance
threshold.





            

          

      

      

    

  

    
      
          
            
  
Pest Insect Mock Communities

Here we consider mock communities of up to six insect species, sequenced with
three pooled markers (18S, 12S, COI), with no-template PCR control blanks:


Batovska et al. (2021) Developing a non-destructive metabarcoding
protocol for detection of pest insects in bulk trap catches
https://doi.org/10.1038/s41598-021-85855-6
https://www.ebi.ac.uk/ena/data/view/PRJNA716058
https://zenodo.org/record/3557020
https://github.com/alexpiper/HemipteraMetabarcodingMS




This example requires creating a database covering the three different marker
primers and known sequences (all of which ought to be properly curated).



	Marker data

	High level overview

	Presence and absence








            

          

      

      

    

  

    
      
          
            
  
Marker data

Either clone the THAPBI PICT source code repository, or decompress the latest
source code release (.tar.gz file). You should find it contains a
directory examples/pest_insects/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis
discussed.


FASTQ data

File PRJNA716058.tsv was download from the ENA and includes the FASTQ
checksums, URLs, and sample metadata.

Script setup.sh will download the raw FASTQ files for Batovska et al.
(2021) from https://www.ebi.ac.uk/ena/data/view/PRJNA716058

It will download 60 raw FASTQ files (30 pairs), taking 7.9 GB on disk.

If you have the md5sum tool installed (standard on Linux), verify the FASTQ
files downloaded correctly:

$ cd raw_data/
$ md5sum -c MD5SUM.txt
...
$ cd ../





There is no need to decompress the files.



Amplicon primers & reference sequences

Three separate markers used here, as shown in the paper’s Supplementary Table
S2, together with the shared Illumina adaptors used.

The authors provide their reference species level sequences as a compressed
FASTA file merged_arthropoda_rdp_species.fa.gz on the GitHub repository
for the paper: https://github.com/alexpiper/HemipteraMetabarcodingMS

The worked example applies the three primer-pairs to this FASTA file to make
an amplicon specific FASTA file for each marker.



Metadata

File metadata.tsv is based on the ENA metadata and the paper text. It has
four columns:


	run_accession, assigned by the public archive, e.g. “SRR14022295”


	sample_alias, e.g. “100-Pool-1” or “Trap-1”


	source, e.g. one of the mock communities like “Pool 1”, or “Trap”


	individuals, e.g. “0100” (with leading zero for sorting) or “-” for traps.




When calling THAPBI PICT, the meta data commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -x 1 -c 3,4,2





Argument -t metadata.tsv says to use this file for the metadata.

Argument -c 3,4,2 says which columns to display and sort by. This means
by source (i.e. which mock community, or environmental traps), then number of
individuals in the mock, and finally the human readable sample alias.
The purpose here is to group the samples logically (sorting on sample_alias
would not work), and suitable for group colouring.

Argument -x 1 (default, so not needed) indicates the filename stem can be
found in column 1, run accession.



Other files

Files mock_community_1.known.tsv, …, mock_community_5.known.tsv list
the expected species in the five different mock community pools. The setup
script will create symlinks using the sample names under sub-folder
expected/ pointing at the relevant community known file. This is for
automatically assessing the classifier performance.

Sub-folders under intermediate/ are used for intermediate files, a folder
for each primer-pair.





            

          

      

      

    

  

    
      
          
            
  
High level overview

The high level summary is that all the samples have high coverage, much higher
than most of the examples we have used. Some of the samples yield over a
million reads for the COI and 12S amplicons, which with the default fractional
minimum abundance threshold of 0.1% (-f 0.001) would mean using over 1000
reads as the threshold. This was too stringent, so the worked example reduces
this to 0.01% (with -f 0.0001) matching the author’s analysis, and dropped
the default absolute abundance threshold of 100 to 50 (with -a 50).

Note that the rarest members of the mock communities are expected from 1 in
500 individuals (0.02%) or 1 in 1000 individuals (0.01%), which is ten times
higher than the fractional abundance threshold.


Sequence yield

We’ll start by looking at the number of read-pairs found for each marker.
After calling ./run.sh you should be able to inspect these report files
at the command line or in Excel.

$ cut -f 3,6-8,10,12-14 summary/COI.samples.onebp.tsv
<SEE TABLE BELOW>





Or open the Excel version summary/COI.samples.onebp.xlsx, and focus
on those early columns:



	sample_alias

	Raw FASTQ

	Flash

	Cutadapt

	Threshold

	Singletons

	Accepted

	Unique





	100-Pool-1

	478705

	474621

	109233

	50

	11074

	86402

	178



	250-Pool-1

	1845819

	1829913

	157310

	50

	23119

	118383

	251



	500-Pool-1

	647776

	643030

	51092

	50

	6446

	36718

	127



	1000-Pool-1

	855997

	848914

	66002

	50

	7967

	49058

	149



	100-Pool-2

	737998

	732014

	432826

	50

	29168

	368249

	418



	250-Pool-2

	2037475

	2022814

	1250718

	126

	85718

	1042562

	482



	500-Pool-2

	1908370

	1895715

	1231908

	124

	59702

	1042441

	442



	1000-Pool-2

	1068715

	1060596

	584017

	59

	33060

	498955

	445



	100-Pool-3

	950692

	940342

	249422

	50

	24964

	189156

	371



	250-Pool-3

	1631700

	1615113

	274422

	50

	39974

	192944

	562



	500-Pool-3

	923807

	916621

	358429

	50

	32221

	284819

	567



	1000-Pool-3

	1773647

	1758637

	468361

	50

	42263

	374487

	733



	100-Pool-4

	634017

	628523

	117499

	50

	14596

	74799

	175



	250-Pool-4

	2501145

	2480381

	441558

	50

	61904

	324512

	707



	500-Pool-4

	572779

	568565

	144488

	50

	18279

	96537

	306



	1000-Pool-4

	1198812

	1189853

	294607

	50

	30130

	220678

	470



	100-Pool-5

	1817929

	1800594

	434739

	50

	45224

	329015

	660



	250-Pool-5

	1632786

	1617219

	440995

	50

	58159

	328842

	729



	500-Pool-5

	807060

	801471

	321428

	50

	30944

	247519

	484



	1000-Pool-5

	1423279

	1411512

	332286

	50

	32751

	255309

	584



	Trap-1

	1759819

	1719671

	110882

	50

	19740

	73024

	251



	Trap-10

	2445993

	2420303

	308371

	50

	58670

	204842

	480



	Trap-2

	1127739

	1107970

	110856

	50

	24385

	55757

	92



	Trap-3

	2422054

	2366037

	161686

	50

	30631

	110043

	268



	Trap-4

	742893

	732907

	63107

	50

	11933

	35225

	77



	Trap-5

	3437292

	3346620

	346696

	50

	71464

	208989

	542



	Trap-6

	697389

	689125

	91284

	50

	17153

	57037

	149



	Trap-7

	2853448

	2820200

	223330

	50

	31011

	169121

	319



	Trap-8

	2196646

	2161966

	146646

	50

	28814

	92632

	220



	Trap-9

	2065455

	2049024

	70591

	50

	14636

	40131

	109






The marker specific tables show the threshold applied was usually 50, the
default absolute value set via -a 50 at the command line. Occasionally
this has been increased to 0.1% of the sequences matching the primers for this
marker, set via -f 0.0001 at the command line.

The numbers are similar for the 12S and 18S markers, or pooling them all:

$ cut -f 3,6,7,13,14 summary/pooled.samples.onebp.tsv
<SEE TABLE BELOW>





Again, alternatively open Excel file summary/pooled.samples.onebp.xlsx,
and focus on those early columns:



	sample_alias

	Raw FASTQ

	Flash

	Accepted

	Unique





	100-Pool-1

	478705

	474621

	371045

	703



	250-Pool-1

	1845819

	1829913

	1508292

	689



	500-Pool-1

	647776

	643030

	522396

	800



	1000-Pool-1

	855997

	848914

	692639

	950



	100-Pool-2

	737998

	732014

	587902

	886



	250-Pool-2

	2037475

	2022814

	1243165

	837



	500-Pool-2

	1908370

	1895715

	1551757

	1142



	1000-Pool-2

	1068715

	1060596

	863574

	1024



	100-Pool-3

	950692

	940342

	684297

	1479



	250-Pool-3

	1631700

	1615113

	1158575

	1241



	500-Pool-3

	923807

	916621

	697552

	1457



	1000-Pool-3

	1773647

	1758637

	1366298

	1993



	100-Pool-4

	634017

	628523

	451801

	879



	250-Pool-4

	2501145

	2480381

	1867605

	1171



	500-Pool-4

	572779

	568565

	416456

	925



	1000-Pool-4

	1198812

	1189853

	918004

	1660



	100-Pool-5

	1817929

	1800594

	1369274

	1918



	250-Pool-5

	1632786

	1617219

	1128901

	1475



	500-Pool-5

	807060

	801471

	603390

	1276



	1000-Pool-5

	1423279

	1411512

	1104412

	1716



	Trap-1

	1759819

	1719671

	392775

	919



	Trap-10

	2445993

	2420303

	492325

	1079



	Trap-2

	1127739

	1107970

	129956

	273



	Trap-3

	2422054

	2366037

	427533

	953



	Trap-4

	742893

	732907

	232800

	403



	Trap-5

	3437292

	3346620

	486282

	1177



	Trap-6

	697389

	689125

	80003

	170



	Trap-7

	2853448

	2820200

	1158684

	842



	Trap-8

	2196646

	2161966

	683669

	1024



	Trap-9

	2065455

	2049024

	1352408

	689






The “Accepted” column is the number of reads matching the primer pairs and
passing our abundance thresholds. The fraction accepted varies from 61% to
82% for the mock community samples, but is considerably lower for the
environmental traps, varying from 11% to 65%. Much of that would be noise and
trace level environmental DNA.

The “Unique” column is the number of accepted unique sequences. For the mock
communities this should be up to 18 with at most six species each, and three
markers. The observed counts are much higher, so we might want to denoise, or
and/or raise the abundance threshold higher. Dropping it further does raise
the false positive rate inferred from the mock communities.





            

          

      

      

    

  

    
      
          
            
  
Presence and absence

This example includes mock communities which are a controlled setup where we
know what the classifier ought ideally to report for every sample - and all
their expected marker sequences are in the classification database.

There are five different mock communities, made up with different numbers of
individuals. Running an overall assessment on the pooled species assignments
from all three markers we have both false positives, and false negatives:

$ cut -f 1-5,9,11 summary/pooled.assess.onebp.tsv
<SEE TABLE BELOW>





As a table:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	85

	21

	3

	1104331

	0.88

	0.220



	Acizzia alternata

	16

	1

	0

	3

	0.97

	0.059



	Acizzia solanicola

	16

	1

	0

	3

	0.97

	0.059



	Bactericera cockerelli

	10

	0

	2

	8

	0.91

	0.167



	Diuraphis noxia

	11

	3

	1

	5

	0.85

	0.267



	Metopolophium dirhodum

	16

	0

	0

	4

	1.00

	0.000



	Rhopalosiphum nymphaeae

	0

	16

	0

	4

	0.00

	1.000



	Rhopalosiphum padi

	16

	0

	0

	4

	1.00

	0.000



	OTHER 55215 SPECIES IN DB

	0

	0

	0

	1104300

	0.00

	0.000






Our 3 false negatives on the pooled results are Bactericera cockerelli (2
cases, 1000-Pool-1` and ``250-Pool-4 matching the authors, with
500-Pool-4 just passing at 62 reads), and Diuraphis noxia (1 case,
500-Pool-3). The authors also reported 500-Pool-3 missing D. noxia,
here it just passes the threshold at 54 reads.

Most of the false positives are 16 cases of Rhopalosiphum nymphaeae, which
is unfortunately indistinguishable from community member R. padi with the
12S marker (see the thapbi_pict conflicts ... output).

Likewise splitting Acizzia alternata and solanicola is not possible with
18S, but we still have unwanted Acizzia alternata and solanicola from 12S
in 500 Pool 2, with 53 and 96 reads respectively. These counts are low
enough to consider raising the abundance threshold(s) to exclude them. In both
cases they match the dominant 12S sequences from the other controls and could
be due to Illumina tag switching?

The remaining false positives are 3 cases of Diuraphis noxia via the 18S
marker, and in one case via the COI marker.

The authors only reported false positives for Diuraphis noxia in one sample,
1000-Pool-1 for both COI and 18S (Figure 3), traced to an unwanted nymph
specimen (Figure 4). We see that too, but have two other false positives:

$ cut -f 3,37,38 summary/pooled.samples.onebp.tsv
<SEE TABLE BELOW>





Note 576 unwanted reads in 1000-Pool-1 for Diuraphis noxia (consistent
with the author’s analysis), but also 503 reads in 100-Pool-5 and 63 in
1000-Pool-5 with a fuzzy match for Diuraphis noxia and/or
Metopolophium dirhodum:



	sample_alias

	Diuraphis noxia

	Diuraphis noxia;Metopolophium dirhodum





	100-Pool-1

	0

	0



	250-Pool-1

	0

	0



	500-Pool-1

	0

	0



	1000-Pool-1

	576

	0



	100-Pool-2

	1630

	0



	250-Pool-2

	1454

	0



	500-Pool-2

	1660

	0



	1000-Pool-2

	228

	0



	100-Pool-3

	2705

	126



	250-Pool-3

	4059

	0



	500-Pool-3

	0

	0



	1000-Pool-3

	94

	0



	100-Pool-4

	6446

	113



	250-Pool-4

	5701

	0



	500-Pool-4

	742

	0



	1000-Pool-4

	684

	54



	100-Pool-5

	0

	503



	250-Pool-5

	0

	0



	500-Pool-5

	0

	0



	1000-Pool-5

	0

	63



	Trap-1

	25009

	135



	Trap-10

	126570

	53



	Trap-2

	106

	0



	Trap-3

	272

	0



	Trap-4

	1351

	0



	Trap-5

	4235

	0



	Trap-6

	16758

	0



	Trap-7

	2733

	0



	Trap-8

	99678

	53



	Trap-9

	37358

	0






Consulting the read report, these Diuraphis noxia false positives from
100-Pool-5 (503 copies) and 1000-Pool-5 (just 63 copies) are from the
same 18S sequence:

>d153aa679f3c184a2790cd26aac9c784
CCGCATTAAGGTGAAACCGCGAAAGGCTCATTAAATCAGTTGTGGTTCCTTAGATCGTACCCAAGTTACTTGGATAACTG
TGGTAATTCTAGAGCTAATACATGCCGACAGAGTTCCGACCGTCGCGGCGCCCTCGGGCGTCGCGCGCGGGAGGAACGCT
TTTATTAGATCAAAACCGGCCCGTCGCGGCGCGCTTCGTGCGCGTCCCGATCGCGGCCCGCGCAAAGACCTGGTGACTCT
GAATAACTTCGAGCTGATCGCACGGTCTCCGTACCGGCGACGCATCTTTCAAAT





With over 500 copies in 100-Pool-5 this cannot be dismissed as a
difference in noise filtering versus the authors’ original analysis.
Querying this on NCBI BLAST confirms it to be 1bp away from multiple
Diuraphis noxia accessions, and a Metopolophium dirhodum voucher sequence
(as in the DB here), but also third species via a sequence labelled as
Acyrthosiphon pisum. Rather than reporting multiple conflicting species,
the author’s pipeline likely assigned a lower rank?


Visualisation

We can look at this visually by reproducing Figure 3 from the original paper.
The authors provided their R based analysis, from which I have exported the
numbers used to draw the figure (see figure3original.R) giving a simple
tab-separated file (figure3original.tsv). Likewise the Python script
figure3reproduction.py will produce an equivalent table using the output
from THABPI PICT (figure3reproduction.tsv). Finally, Python script
recreate_figure3.py uses MatPlotLib to reproduce an annotated recreation
of the original.

Original analysis:

[image: ../../_images/fd6d8e144aa28d1b960667abc092bf611d419236.png]
This re-analysis:

[image: ../../_images/b8d9ca68f5895ce5cba45228d59f3afe4094c91f.png]
In the original paper the false positives and false negatives were marked with
pluses and minus in colour coded circles, and these were added by hand.
Here this annotation is automated, but is less aesthetically pleasing. The
false negatives get a cross, false positives are shown with an exclamation
mark, and furthermore low abundance (under 5%) true positives get a tick.
Again, these are all species coloured.

Overall this seems to show very good agreement with the published analysis.





            

          

      

      

    

  

    
      
          
            
  
Endangered Species Mixes 16S etc

This is the most complicated of the examples considered, where most of the
samples are “Experimental mixtures” of multiple plants and animals (plus two
traditional medicine mixtures where the exact content is unknown), which have
all been sequenced with about a dozen different primer pairs for multiple
metabarcoding markers including 16S, COI, cyt-b, matK, rbcL, trnL and ITS2:


Arulandhu et al. (2017) Development and validation of a multi-locus DNA
metabarcoding method to identify endangered species in complex samples.
https://doi.org/10.1093/gigascience/gix080




This example requires creating a database of multiple markers (all of which
ought to be properly curated). Both per-marker reports and a pooled report
are generated by the pipeline.



	Marker data

	Universal animal DNA barcodes and mini-barcodes

	Universal plant DNA barcodes and mini-barcodes

	Pooled animal and plant DNA barcodes








            

          

      

      

    

  

    
      
          
            
  
Marker data

Either clone the THAPBI PICT source code repository, or decompress the
latest source code release (.tar.gz file). You should find it contains
a directory examples/endangered_species/ which is for this example.

Shell scripts setup.sh and run.sh should reproduce the analysis
discussed - although the documentation will take you though this step by step.

Under the intermediate/ folder will be a subdirectory for each of the
primer settings, and the primer name is used as a prefix for the reports
in summary/.

Compared to the other examples, there is an additional tmp_merged/
subfolder which contains gzipped FASTA files after quality trimming and merging
overlapping paired reads into single sequences - but prior to applying the
various primers and abundance thresholds.


FASTQ data

File PRJEB18620.tsv was download from the ENA and includes the raw data
checksums, URLs, but lacks any sample metadata.

Script setup.sh will download the raw FASTQ files for Arulandhu et al.
(2017) from https://www.ebi.ac.uk/ena/data/view/PRJEB18620

It will download 354 raw FASTQ files (177 pairs), taking about 6.5GB on disk.
The 177 sequenced samples are made up of 17 experimental mixtures (including
only two with replicates, 1.1GB) and 160 inter-laboratory trials (16 samples
repeated in 10 laboratories, 5.4GB).

This script first downloads files from the ENA under raw_downloads/ (a mix
of *.zip and *.fastq.gz files), and then sets up consistently named
and compressed entries under raw_data/*.fastq.gz instead.

If you have the md5sum tool installed (standard on Linux), verify the files
downloaded correctly:

$ cd raw_download/
$ md5sum -c MD5SUM.txt
...
$ cd ..





There is no need to decompress the files.



Amplicon primers & reference sequences

All the samples were all amplified with a dozen primers (see Table 1). To
interpret the data properly you would need a well curated database for each
marker - FASTA files are provided to build a rudimentary database.

Files references/*.fasta were compiled by hand on an ad hoc basis to
use for pre-trimmed reference databases. They should not be used as is in
any serious analysis. In many cases ambiguous matches have been omitted in
preference of just species expected in the control mixtures. For example, only
recording Brassica napus and Brassica oleracea despite some markers being
shared by Brassica juncea or Brassica nigra etc. In more extreme cases,
markers are clearly not even genus specific, but again only the control
mixture representative appears - e.g. Carica papaya, Glycine max,
Gossypium hirsutum, Lactuca sativa, Solanum lycopersicum. Deliberately
reducing the false positives from these ambiguous marker sequences was done
for illustrative purposes only.

Note that false positives remain, for example an ITS2 sequence most likely
from Lactuca sativa in the control mixture is just one base pair away from
a published sequence from that species (KM210323.1), but perfectly matches
published sequences from Lactuca altaica, L. serriola and L. virosa.



Metadata

The sample metadata on the ENA is minimal, although the NCBI SRA has longer
descriptions. For example run ERS1545972 from sample SAMEA80893168 aka
EM_1 has title “Experimental mixture 1” but only the NCBI has description
“Experimental mixture containing 99% Bos taurus and 1% Lactuca sativa”. Or,
run ERS1546502 from sample SAMEA81290668  aka S1_Lab_1 has title
“Interlaboratory trial” while the NCBI also has the description “Experimental
mixture containing 1% Zea mays, 1% Glycine max, 1% Aloe variegata, 1%
Dendrobium sp., 1% Huso Dauricus, 1% Crocodylus niloticus, 47% Brassica
oleracea and 47% Bos taurus, in dry weight percentages”.

File PRJEB18620.tsv with the descriptions on the NCBI SRA, supplemented by
Table 7, was used to write metadata.tsv, which has the following columns:


	run_accessions, e.g. “ERR1824060;ERR1824061;…;ERR1824075”


	run_names, e.g. “EM_1” or “S1_Lab_1;S1_Lab_2;…;S1_Lab_16”


	group, “Experimental mixture” or “Interlaboratory trial”


	sample, e.g. “EM_1” or “S1”


	description, e.g. “Experimental mixture containing 1% Zea mays, 1% Glycine
max, 1% Aloe variegata, 1% Dendrobium sp., 1% Huso Dauricus, 1% Crocodylus
niloticus, 47% Brassica oleracea and 47% Bos taurus, in dry weight
percentages.”




Note we have a single row for each set of replicates (two cases in the initial
“Experimental mixture” set, and 16 laboratories for each of the 10
“Interlaboratory trial” samples), cross referenced to the individual runs
with semi-colon separated lists in columns 1 (accession) and 2 (filename).

When calling THAPBI PICT, the metadata commands are given as follows:

$ thapbi_pict ... -t metadata.tsv -c 3,4,5 -x 2 -g 4





Argument -c 3,4,5 says which columns to display and sort by. This means
group, sample, description. Given the sample prefix naming, putting the group
first is not essential for sorting, but is logical.

Argument -x 2 indicates the filename stem can be found in column 2. Unlike
most of the worked examples, we are not using the accession filenames here.

Argument -g 4 means assign colour bands using sample. This gives 15 thin
bands for the “Experimental mixture” set, and then 10 wide bands for the
“Interlaboratory trial” samples. By chance the two traditional medicine
samples both get wide green bands in the Excel reports.



Other files

Files expected/*.known.tsv were compiled by hand from the species content
of the experimental samples (using the PRJEB18620 sample descriptions on the
NCBI and Table 7).





            

          

      

      

    

  

    
      
          
            
  
Universal animal DNA barcodes and mini-barcodes

For 16S, COI and cyt-b the paper used two targets, a long barcode and a shorter
mini-barcode. The same names have been used in the run.sh script provided,
the output of which is referred to below.


16S - long marker

The 16S primer set output is disappointing at the default abundance threshold,
with only a single unique sequence observed - I suspect the long product size
is part of the issue, it must be at the upper limit for overlapping MiSeq read
pairs?

$ grep -v "^#" summary/16S.tally.tsv | cut -f 1,179
16S/1f2b15d58f9f40b862486676809d4744_20189  CACCTCCAGCATTCCCAGTATTGGAGGCATTGCCTGCCCAGTGACAACTGTTTAACGGCCGCGGTATCCTGACCGTGCAAAGGTAGCATAATCATTTGTTCTCTAAATAAGGACTTGTATGAATGGCCGCACGAGGGTTTTACTGTCTCTTACTTCCAATCAGTGAAATTGACCTTCCCGTGAAGAGGCGGGAATGCACAAATAAGACGAGAAGACCCTATGGAGCTTTAACTAACCAACCCAAAGAGAATAGATTTAACCATTAAGGAATAACAACAATCTCCATGAGTTGGTAGTTTCGGTTGGGGTGACCTCGGAGAATAAAAAATCCTCCGAGCGATTTTAAAGACTAGACCCACAAGTCAAATCACTCTATCGCTCATTGATCCAAAAACTTGATCAACGGAACAAGTTACCCTAGGGATAACAGCGCAATCCTATTCAAGAGTCCATATCGACAATAGGGTTTACGACCTCGATGTTGGATCAGGACATCCTGATGGTGCAACCGCTATCAAAGGTTCGTTTGTTCAACGATTAAAGTCCT





This perfectly matches Bos taurus and was found in most but not all of the
samples expected - perhaps the default abundance threshold is too high?



Mini-16S - short marker

The output from the Mini-16S marker is far more diverse, with 84 unique
sequences:

$ grep -c -v "^#" summary/Mini-16S.tally.tsv
84





The most common is again a perfect match to Bos taurus, which this time has
no false negatives (but two false positives?).

We have all the expected Sus scrofa matches, and some of Gallus gallus and
Anguilla anguilla expected in six samples. Crocodylus niloticus is also
found but at far lower levels than expected.

We do see Homo sapiens, but happily only in the traditional medicine samples
(multiple replicates within S3 and S8). Within those samples, the
laboratory 16 replicates S3_Lab_16 and S8_Lab_16 also had Rattus
tanezumi and Rattus norvegicus too, respectively.

Overall, again perhaps the default abundance threshold is too high?



COI - long marker

Assuming I understood the paper correctly, this used a pool of four left
primers and four right primers. That is not easily handled with THAPBI PICT at
the time of writing.



Mini-COI - short marker

The output from the Mini-COI marker is quite diverse, with 22 unique sequences:

$ grep -c -v "^#" summary/Mini-COI.tally.tsv
22





The species matches are all reasonable, it detects all the Pieris brassicae,
most of the Bos taurus, Pleuronectes platessa, Sus scrofa, many of the
Huso dauricus and Gallus gallus.

We have unexpected Acipenser schrenckii, which was also found in the paper
and explained due to sample preparation.

There are also plenty of unclassified sequences from the traditional medicine
samples, based on an NCBI BLAST search many are likely from undescribed fungi.



cyt-b - long marker

This gave no sequences at the default abundance threshold, nor at 50. Dropping
to 10 we get a modest number of hits - the only perfect match was unfortunately
to plants in the Asteraceae family.



Mini-cyt-b - short marker

The output from the Mini-COI marker had only 17 unique sequences:

$ grep -c -v "^#" summary/Mini-cyt-b.tally.tsv
17





This found all the expected Sus scrofa and Meleagris gallopavo, and most
Bos taurus, Crocodylus niloticus, Huso dauricus and some of the
Anguilla anguilla.

As above, we have explained false matches for Acipenser schrenckii, and
again Homo sapiens in the traditional medicine but also in EM_8.





            

          

      

      

    

  

    
      
          
            
  
Universal plant DNA barcodes and mini-barcodes

As in the animal primers, for rbcL the paper used two targets, a long barcode
and a shorter mini-barcode. The same names have been used in the run.sh
script provided, the output of which is referred to below.


matK

The paper described two sets of primers for matK, although only one was used
for the MiSeq sequencing. This gave no sequences at the default abundance
threshold, dropping to 50 showed three uniques sequences in three files, and
even dropping to 10 only gave results from EM_2, EM_14 and S8.

NCBI BLAST of these sequence gave no perfect matches, but suggested
Sanguisorba sp. was present, noted in the original paper for S8 which
is one of the traditional medicine samples.



rbcL - long target

Using our default abundance threshold and the author’s minimum length of 140bp,
we got no sequences at all. Allowing a minimum length of 100 (our default)
gave the following sequence and a one SNP variant, all from S3:

>3ec67342f519461a0ad40fef436b1b1d
GACTGCGGGGTTCAAAGCTGGTGTTAAAGATTATAGATTGACGTATTATACTCCTGAATTGGGGTTATCCGCTAAGAATT
ACGGTAGAGCAGTTTATGAATGTCTT





The best NCBI BLAST matches are Astragalus, but with a break point. The
authors of the original paper report finding Astragalus danicus in S3.



Mini-rbcL - short target

This was by far and above the most diverse in terms of unique sequences
recovered:

$ grep -c -v "^#" summary/Mini-rbcL.tally.tsv
278





We see expected plant species like Lactuca sativa, Brassica oleracea,
Aloe variegata and Dendrobium sp. - exactly how they are classified
depends critically on how the database is built.

The traditional medicine samples have multiple unknown sequences likely of
plant origin.

The edit-graph is the most complicated of those in this dataset - not
simply in terms of the number of nodes. This marker needs more careful
review before using THAPBI PICT’s default onebp classifier.



trnL-UAA

Not very diverse, only eight unique sequences recovered:

$ grep -c -v "^#" summary/trnL-UAA.tally.tsv
8





We see lots of Brassica, the difficulties with Brassica oleracea vs
Brassica napus (and the genus in general) are discussed in the paper too.



trnL-P6-loop

Initially I saw no sequences with this marker, even disabling the abundance
threshold. This was strange, however easily explained - quoting the paper:


We implemented a minimum DNA barcode length of 200 nt, except for DNA
barcodes with a basic length shorter than 200 nt, in which case the
minimum expected DNA barcode length is set to 100 nt for ITS2, 140 nt
for mini-rbcL, and 10 nt for the trnL (P6 loop) marker.




Therefore in run.sh we have changed the THAPBI PICT minimum length from
100 (our default) to 10 for this marker - and now get lots, over a hundred
unique sequences:

$ grep -c -v "^#" summary/trnL-P6-loop.tally.tsv
134





We find this dominated by Brassica oleracea in most samples. However, at
our default abundance threshold we do not find Cycas revoluta which is
consistent with the original analysis reporting this at very low abundance.

Our reference set here has Aloe reynoldsii sequences, but none for the
expected entry Aloe variegata.

An obvious false positive here is Cullen sp. which like the authors we found
in the S3 traditional medicine, but also unexpectedly in all the S1
samples.



ITS2

Quite diverse, with over fifty unique sequences recovered:

$ grep -c -v "^#" summary/ITS2.tally.tsv
59





Finds all the Brassica and Echinocactus sp., most of the Euphorbia sp.

We do see unexpected matches to Lactuca sp. where Lactuca sativa was in
the experimental mixture. The dominant sequence present is just one base pair
away from a published sequence from that species (KM210323.1), but perfectly
matches published sequences from Lactuca altaica, L. serriola and
L. virosa - and that is what was in the sample database. If you open the
associated edit-graph file (ITS2.edit-graph.onebp.xgmml) in Cytoscape,
you can see this quite clearly.





            

          

      

      

    

  

    
      
          
            
  
Pooled animal and plant DNA barcodes

We have very briefly reviewed the output of each of the animal and plant
markers, noting some have no sequences at the THAPBI PICT default minimum
abundance threshold. Now we discuss the pooled results.


Sample report

Please open the summary/pooled.samples.onebp.xlsx sample report, zoomed
out you should have something like this:

[image: Excel screenshot showing summary/pooled.samples.onebp.xlsx]
The final column is the unknowns - and even at this zoom it is possible to see
a solid red region for the two traditional medicine samples (wide green
background bands).



Read report

To look at the unknown reads see summary/pooled.reads.onebp.xlsx. Sorting
be the species prediction and zooming out should show something like this
where the top half of the rows are those sequences with a species prediction.
It is clear that the majority of the unknown sequences are from the two
traditional medicine samples (wide green bands):

[image: Excel screenshot showing pooled.reads.onebp.xlsx]
Overall the replicates are reassuringly consistent - look at neighbouring
rows/columns within the colour bands in the two reports.



Pooled classifier assessment

The automated model assessment output in summary/pooled.assess.onebp.tsv
is also worth review. Note this only looks at the experimental mixtures where
there is a ground truth (S1, S2, S4, S5, S6, S7, S9 and S10) - not the
traditional medicine samples where the true species content is unknown.

$ cut -f 1-5,9,11 summary/pooled.assess.onebp.tsv
<SEE TABLE BELOW>





Working at the command line or using Excel should show the following:



	#Species

	TP

	FP

	FN

	TN

	F1

	Ad-hoc-loss





	OVERALL

	1058

	727

	240

	7699

	0.69

	0.478



	Acipenser schrenckii

	0

	20

	0

	123

	0.00

	1.000



	Aloe reynoldsii

	0

	114

	0

	29

	0.00

	1.000



	Aloe variegata

	110

	0

	25

	8

	0.90

	0.185



	Anguilla anguilla

	3

	0

	3

	137

	0.67

	0.500



	Beta vulgaris

	0

	0

	16

	127

	0.00

	1.000



	Bos taurus

	139

	2

	0

	2

	0.99

	0.014



	Brassica juncea

	0

	127

	0

	16

	0.00

	1.000



	Brassica napus

	7

	0

	9

	127

	0.61

	0.562



	Brassica nigra

	0

	127

	0

	16

	0.00

	1.000



	Brassica oleracea

	128

	6

	0

	9

	0.98

	0.045



	Brassicaceae (misc)

	0

	70

	0

	73

	0.00

	1.000



	Cactaceae (misc)

	0

	3

	0

	140

	0.00

	1.000



	Carica papaya

	16

	0

	0

	127

	1.00

	0.000



	Crocodylus niloticus

	122

	0

	12

	9

	0.95

	0.090



	Cullen sp.

	0

	16

	0

	127

	0.00

	1.000



	Cycas revoluta

	3

	0

	3

	137

	0.67

	0.500



	Dendrobium sp.

	131

	0

	3

	9

	0.99

	0.022



	Echinocactus sp.

	6

	0

	0

	137

	1.00

	0.000



	Euphorbia sp.

	3

	0

	3

	137

	0.67

	0.500



	Gallus gallus

	6

	1

	0

	136

	0.92

	0.143



	Glycine max

	16

	0

	0

	127

	1.00

	0.000



	Gossypium hirsutum

	16

	0

	0

	127

	1.00

	0.000



	Homo sapiens

	0

	2

	0

	141

	0.00

	1.000



	Huso dauricus

	112

	0

	16

	15

	0.93

	0.125



	Lactuca altaica

	0

	66

	0

	77

	0.00

	1.000



	Lactuca sativa

	74

	2

	0

	67

	0.99

	0.026



	Lactuca serriola

	0

	66

	0

	77

	0.00

	1.000



	Lactuca tatarica

	0

	39

	0

	104

	0.00

	1.000



	Lactuca virosa

	0

	66

	0

	77

	0.00

	1.000



	Meleagris gallopavo

	16

	0

	0

	127

	1.00

	0.000



	Parapenaeopsis sp.

	0

	0

	6

	137

	0.00

	1.000



	Pieris brassicae

	6

	0

	0

	137

	1.00

	0.000



	Pleuronectes platessa

	64

	0

	0

	79

	1.00

	0.000



	Solanum lycopersicum

	16

	0

	0

	127

	1.00

	0.000



	Sus scrofa

	64

	0

	0

	79

	1.00

	0.000



	Triticum aestivum

	0

	0

	16

	127

	0.00

	1.000



	Zea mays

	0

	0

	128

	15

	0.00

	1.000



	OTHER 31 SPECIES IN DB

	0

	0

	0

	4433

	0.00

	0.000






Most of the false positives (FP) are alternative genus level matches in
Brassica and Lactuca (as discussed in the paper). The two sequences we
recorded in the Mini-rbcL reference set as the family Brassicaceae are likely
also Brassica. The trnL-P6-loop marker had references for Aloe reynoldsii
but these matches are most likely from Aloe variegata.

A couple of the unique sequences are in the Mini-rbcL reference as the family
Cactaceae, and since they only appeared in the experimental mixes, these are
likely Echinocactus sp. or Euphorbia sp.

There are more interesting FP for Acipenser schrenckii (the authors found
this was accidentally included from the Huso dauricus caviar used), human
(Homo sapiens, presumed laboratory contamination), and finally Lactuca
sativa, cow (Bos taurus) and chicken (Gallus gallus) which the authors
traced to cross-contamination during sample preparation or DNA isolation.

Why do Cullen sp. show up in S1 from the trnL P6 loop marker (as well
as S3 which the authors found too, see their Table 8)?

If the sample database had been more inclusive there would have been many
more false positives. For example, the trnL-UAA sequence perfectly matching
AP007232.1 Lactuca sativa is also a perfect match for MK064549.1 Luisia
teres. Similarly, the Mini-rbcL sequence perfectly matching AP012989.1
Brassica nigra and MG872827.1 Brassica juncea also matches MN056359.2
Raphanus sativus (and more). This demonstrates the difficulties in curating
an appropriate marker database - and the content should depend in part on your
target samples.

Currently the provided references sequences (and thus classification databases
used) lack any markers for Beta vulgaris, Parapenaeopsis sp.,
Triticum aestivum or Zea mays. Most of these were present at only a few
percent dry weight, and are likely present below the default minimum abundance
threshold. This explains the false negatives.



Conclusion

It appears that the THAPBI PICT default minimum abundance threshold of 100
reads is too stringent for detecting all the markers in a complex pool like
this. Including negative sequencing controls would help set an objective
lower bound.

There also appear to be marker sequences in these control samples which have
not yet been published, which would help by filling in gaps in the reference
set used for classification.

Also note we did not look at the multi-primer COI long marker, and perhaps the
default onebp classifier is not appropriate for the Mini-rbcL marker.





            

          

      

      

    

  

    
      
          
            
  
Reference database


Introduction

THAPBI PICT has been designed as a framework which can be applied to multiple
biological contexts, demonstrated in the worked examples. Each new set of marker(s) (i.e. PCR primer targets) will
require a new reference database be compiled, most likely starting from
published sequences, but we also sequenced culture collections.

Applied to environmental samples, some primer pairs will amplify a much wider
sequence space than others, either reflecting a more diverse genome region, or
simply a longer sequence. Related to this, the fraction of observed sequences
with a published reference will also vary - and thus the density of the
references in sequence space. This in turn will can change which classifier
algorithm is most appropriate. Inspecting the edit-graph produced for all your
samples and your initial database entries can help interpret this.

The default classifier allows perfect matches, or a single base pair
difference (substitution, insertion or deletion). This requires good database
coverage with unambiguous sequences, which we have been able to achieve for
the Phytophthora ITS1 region targeted by default.



Provided database

THAPBI provides a default database which is used when the command line -d
or --database setting is omitted. This is intended for use with a
Phytophthora ITS1 target region, and is used in the first
worked example.

For further details see the database/README.rst file in the source code,
and script database/build_ITS1_DB.sh which automates this.



Ambiguous bases in database

Ideally all the reference sequences in your database will have unambiguous
sequences only (A, C, G and T). However, some published
species sequences will contain IUPAC ambiguity codes, especially if capillary
sequenced. How this is handled will depend on the classifier algorithm used.

For example Phytophthora condilina accession KJ372262 has a single W
meaning A or T. In this case for P. condilina in our curated set, we
could select the unambiguous accession MG707826 instead.

With the strictest identity classifier, the W will never be matched
(since the Illumina platform does not produce any ambiguous bases other than
N). With the default onebp classifier, this can match but the W
would be the single allowed mismatch (and any database entry with more than
one ambiguity would never be matched). The blast classifier uses NCBI
BLAST+ internally, and would handle the base as expected.



Conflicting taxonomic assignments

With any amplicon marker, it is possible that distinct species will share the
exact same sequence. For example, this happens with our ITS1 marker for model
organism Phytophthora infestans and sister species P. andina and
P. ipomoeae. In cases like this where the classifier finds multiple equally
valid taxonomic assignments in the database, they are all reported. Should
the user wish however, their database could record a single assignment like
Phytophthora infestans-complex.

Our default primers for Phytophthora can amplify related genera, not just
Peronosporales, but also some Pythiales. Expanding the database coverage
runs into two main problems. First, with less published sequences available,
the default strict classifier may fail to match many sequences to a published
sequence. Second, with past renaming and splitting of some genera, the
taxonomic annotation can becomes less consistent.

The thapbi_pict conflicts subcommand can be used to report any conflicts
at species or genus level.





            

          

      

      

    

  

    
      
          
            
  
Abundance & Negative Controls

Any negative control sample is not expected to contain any of the target
sequences (although it may contain spike-in synthetic control sequences).

On a typical 96-well plate of PCR products which will go on to be multiplexed
for Illumina MiSeq sequencing, most of the samples are biological - but some
should be negative controls (e.g. PCR blanks, or synthetic sequences).
The presence of biological sequence reads in the negative control samples is
indicative of some kind of cross contamination. Likewise, synthetic sequences
in the biological samples are a warning sign.

The tool implements both absolute and fractional abundance thresholds, which
can be specified at the command line.  Moreover, control samples can be used
to automatically raise the threshold for batches of samples. Simple negative
controls can be used to set an absolute abundance threshold, but to set the
fractional abundance threshold we need to be able to distinguish expected
sequences from unwanted ones. For this we require known spike-in control
sequences, which are clearly distinct from the biological markers.


Spike-in Controls

Four synthetic sequences were designed for Phyto-Threats project which funded
THAPBI PICT. These were of the typical expected ITS1 fragment length and base
content, had the typical fixed 32bp header, but were otherwise shuffled with
no biological meaning (avoiding any secondary structure forming). They were
synthesised using Integrated DNA Technologies gBlocks Gene Fragments [https://www.idtdna.com/pages/products/genes-and-gene-fragments/double-stranded-dna-fragments/gblocks-gene-fragments].

Our 96-well PCR plates included multiple control samples which were known
ratios of these synthetic sequences, rather than environmental DNA.

The tool needs a way to distinguish biological marker sequences (for which
we wanted to make as few assumptions as possible) from the synthetic ones
(where the template sequences were known, subject only to PCR noise).

The spike-in controls are assumed to be in the database, by default under
the synthetic “genus” but that is configurable. Similar sequences in the
samples are considered to be spike-ins. While the PCR noise is typically just
a few base pair changes, we also found large deletions relatively common. The
matching is therefore relaxed, currently based on k-mer content.

Conversely, the presence of the synthetic controls in any of the biological
samples is also problematic. Since our synthetic control sequences are in
the default database, they can be matched by the chosen classifier, and
appear in the reports.



Minimum Absolute Abundance Threshold

The initial absolute abundance threshold is set at the command line with
-a or --abundance giving an integer value. If your samples have
dramatically different read coverage, then the fractional abundance threshold
may be more appropriate (see below).

During the sample tally step, the -n or --negctrls argument gives
the sample filenames of any negative controls to use to potentially increase
the absolute abundance threshold (see below). If you have no spike-in
controls, then any sequences in these negative controls can raise the
threshold - regardless of what they may or may not match in the reference
database.



Minimum Fractional Abundance Threshold

The initial fractional abundance threshold is set at the command line with
-f or --abundance-fraction to an floating point number between zero
and one, thus -f 0.001 means 0.1%. This is a percentage of the reads
identified for each marker after merging the overlapping pairs and primer
matching.

During the read preparation step, the -y or --synctrls argument gives
the sample filenames of any synthetic controls to use to potentially increase
the absolute abundance threshold. This setting works in conjunction with the
database which must include the spike-in sequences under the genera specified
at the command lines with --synthetic (by default “synthetic”).



Automatic thresholds

Any control samples are processed first, before the biological samples, and
high read counts can raise the threshold to that level for the other samples
in that folder. This assumes if you have multiple 96-well plates, or other
logical groups, their raw FASTQ files are separated into a sub-folder per
plate.

Control samples given via -n can raise the absolute abundance threshold
(any synthetic spike-in reads are ignored for this), while controls given via
-y can raise the fractional abundance threshold (but must have synthetic
spike-in reads in order to give a meaningful fraction).

For example, if running with the default minimum abundance threshold of 100
(set via -a 100), and a negative control (set via
-n raw_data/CTRL*.fastq.gz) contains a non-spike-in (and thus presumably
biological) sequence at abundance 136, then the threshold for the non-control
samples in that folder is raised to 136.

Alternatively, you might have synthetic spike-in controls listed with
-y raw_data/SPIKES*.fastq.gz and use -f 0.001 to set a default
fractional abundance threshold of 0.1%. Suppose a control had 100,000 reads
for a marker passing the overlap merging and primer matching, of which 99,800
matched the spike-ins leaving 200 unwanted presumably biological reads, of
which the most abundant was at 176 copies. Then the fractional abundance
threshold would be raised slightly to 176 / 100000 = 0.00176 or 0.176%.

Note that a control sample can be used with both -n and -y, so in
this second example that would also raise the absolute abundance threshold
to 176 reads.

Potentially a synthetic control sample can have unusually low read coverage,
meaning even a low absolute number of non-spike-in reads (at noise level)
would give a spuriously high inferred fractional abundance threshold. To guard
against this corner case, as a heuristic half the absolute abundance threshold
is applied to the synthetic control samples. Likewise, half of any fractional
abundance threshold is applied to the negative control samples, which guards
against spurious raising of the absolute threshold.

A similar problem would occur if you accidentally use -y on a sample
without any expected spike-in controls. This would suggest result in an overly
high fractional threshold, treated as an error.





            

          

      

      

    

  

    
      
          
            
  
Classifier Assessment

In assessing classification performance, it is the combination of both
classification method (algorithm) and marker database which which matters.
Settings like the abundance threshold and any read correction are also
important, and the tool default settings partly reflect one of the original
project goals being to avoid false positives.

To objectively assess a metabarcoding classifier we require sequenced samples
of known composition, which generally means single isolates (where a single
marker sequence is typically expected), or mock communities (the bulk of our
worked examples). Carefully controlled environmental
samples are possible too. We use Muri et al. (2020) as a worked
example identifying fish species where the lake was drained
to collected and identify all the individual fish, but this is problematic as
the lakes were large enough that DNA from each fish could not be expected at
all the sampling points, giving an inflated false negative count.

Our tool includes an presence/absence based assessment framework based on
supplying expected species lists for control samples, from which the true
positive (TP), false positive (FP), true negative (TN), and false negative
(FN) counts can be computed for each species. These are the basis of standard
metrics like sensitivity (recall), specificity, precision, F-score (F-measure,
or F1), and Hamming Loss. It is simple but not overly helpful to apply metrics
like this to each species, but the overall performance is more informative.

However, some scores like the Hamming Loss are fragile with regards to the TN
count when comparing databases. The Hamming Loss given by the total number of
mis-predicted class entries divided by the number of class-level predictions,
thus (FP + FN) / (TP + FP + FN + TN).
Consider a mock community of ten species, where the classifier made 11
predictions which break down as 9 TP and 2 FP, meaning 10 - 9 = 1 FN.
Suppose the database had a hundred species (including all ten in the mock
community), that leaves 100 - 9 - 1 - 2 = 88 TN, and a Hamming Loss of 3/100
= 0.03. Now suppose the database was extended with additional references not
present in this mock community, perhaps expanding from European Phytophthora
species to include distinct entries for tropical species, or a sister group
like Peronospora. The denominator would increase, reducing the Hamming Loss,
but intuitively the classifier performance on this mock community has not
changed. To address this, the classifier assessment also includes a modified
ad-hoc loss metric calculated as the total number of mis-predicted class
entries divided by the number of class-level predictions ignoring TN, or
(FP + FN) / (TP + FP + FN) which in this example would give 3/12 = 0.25
regardless of the number of species in the database. This is an intuitive
measure weighting FP and FN equally (smaller is better, zero is perfect),
a potential complement to the F-score.

Note that the assessment framework only considers species level predictions,
ignoring genus only predictions, and thus will not distinguish between the
default onebp classifier and variants like 1s3g.




            

          

      

      

    

  

    
      
          
            
  
Command Line

THAPBI PICT is a command line tool, meaning you must open your command line
terminal window and key in instructions to use the tool. The documentation
examples use the $ (dollar sign) to indicate the prompt, followed by text
to be entered. For example, this should run the tool with no instructions:

$ thapbi_pict
...





Rather than literally printing dot dot dot, the tool should print out some
terse help, listing various sub-command names, and an example of how to get
more help.

For example, -v (minus sign, lower case letter v) or --version (minus,
minus, version in lower case) can be added to find out the version of the tool
installed:

$ thapbi_pict -v
THAPBI PICT v0.8.1





THAPBI PICT follows the sub-command style popularised in bioinformatics by
samtools (also used in the version control tool git). This means most
of the instructions take the form thapbi_pict sub-command ..., where the
dots indicate some additional options.

The main sub-commands are to do with classifying sequence files and reporting
the results, and these are described in the first worked example:


	prepare - turn paired FASTQ input files for each sample, giving
de-duplicated FASTA files


	fasta-nr and sample-tally pooling intermediate files for analysis


	classify - produce genus/species level predictions as
tab-separated-variable TSV files


	summary - summarise a set of predictions by sample (with human readable
report), and by unique sequence and sample (both with Excel reports)


	edit-graph - draw the unique sequences as nodes on a graph, connected by
edit-distance


	assess - compare classifier output to known positive controls


	pipeline - run all of the above in sequence




There are further sub-commands to do with making or inspecting an SQLite3
format barcode marker sequence database, most of which are covered in the
second worked example, with a custom database:


	dump - export a DB as TSV or FASTA format


	load-tax - import a copy of the NCBI taxonomy


	import - import a FASTA file, e.g. using the NCBI style naming


	conflicts - report on genus or species level conflicts in the database




And some other miscellaneous commands:


	ena-submit - write a TSV table of your paired FASTQ files for use with
the ENA interactive submission system.




Start with reading the help for any command using -h or --help as
follows:

$ thapbi_pict pipeline -h
...





Most of the commands have required arguments, and if you omit a required
argument it will stop with an error:

$ thapbi_pict pipeline
...
thapbi_pict pipeline: error: the following arguments are required: -i/--input, -o/--output








            

          

      

      

    

  

    
      
          
            
  
Python API

THAPBI Phytophthora ITS1 Classifier Tool (PICT).

You would typically use THAPBI PICT via the command line tool it defines:

$ thapbi_pict --help
...





However, it is also possible to call functions etc from within Python. The
top level package currently only defines the tool version:

>>> from thapbi_pict import __version__
>>> print(__version__)





The tool documentation [https://thapbi-pict.readthedocs.io/] is
hosted by Read The Docs [https://readthedocs.org/], generated
automatically from the docs/ folder of the software repository [https://github.com/peterjc/thapbi-pict/] and the “docstrings”
within the source code which document the Python API.



	thapbi_pict.assess module

	thapbi_pict.classify module

	thapbi_pict.conflicts module

	thapbi_pict.denoise module

	thapbi_pict.db_import module

	thapbi_pict.db_orm module

	thapbi_pict.dump module

	thapbi_pict.edit_graph module

	thapbi_pict.fasta_nr module

	thapbi_pict.sample_tally module

	thapbi_pict.prepare module

	thapbi_pict.summary module

	thapbi_pict.taxdump module

	thapbi_pict.utils module

	thapbi_pict.ena_submit module

	thapbi_pict.versions module








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.assess module

Assess classification of marker reads at species level.

This implements the thapbi_pict assess ... command.


	
thapbi_pict.assess.class_list_from_tally_and_db_list(tally: dict[tuple[str, str], int], db_sp_list: list[str]) → list[str]

	Sorted list of all class names used in a confusion table dict.






	
thapbi_pict.assess.extract_binary_tally(class_name: str, tally: dict[tuple[str, str], int]) → tuple[int, int, int, int]

	Extract single-class TP, FP, FN, TN from multi-class confusion tally.

Reduces the mutli-class expectation/prediction to binary - did they
include the class of interest, or not?

Returns a 4-tuple of values, True Positives (TP), False Positives (FP),
False Negatives (FN), True Negatives (TN), which sum to the tally total.






	
thapbi_pict.assess.extract_global_tally(tally: dict[tuple[str, str], int], sp_list: list[str]) → tuple[int, int, int, int]

	Process multi-label confusion matrix (tally dict) to TP, FP, FN, TN.

If the input data has no negative controls, all there will be no
true negatives (TN).

Returns a 4-tuple of values, True Positives (TP), False Positives (FP),
False Negatives (FN), True Negatives (TN).

These values are analogous to the classical binary classifier approach,
but are NOT the same. Even if applied to single class expected and
predicted values, results differ:


	Expect none, predict none - 1xTN


	Expect none, predict A - 1xFP


	Expect A, predict none - 1xFN


	Expect A, predict A - 1xTP


	Expect A, predict B - 1xFP (the B), 1xFN (missing A)


	Expect A, predict A&B - 1xTP (the A), 1xFP (the B)


	Expect A&B, predict A&B - 2xTP


	Expect A&B, predict A - 1xTP, 1xFN (missing B)


	Expect A&B, predict A&C - 1xTP (the A), 1xFP (the C), 1xFN (missing B)




The TP, FP, FN, TN sum will exceed the tally total.  For each tally
entry, rather than one of TP, FP, FN, TN being incremented (weighted
by the tally count), several can be increased.

If the input data has no negative controls, all there will be no TN.






	
thapbi_pict.assess.load_tsv(mapping: dict[tuple[str, str], str], classifier_file: str, min_abundance: int) → dict[tuple[str, str], str]

	Update dict mapping of (marker, MD5) to semi-colon separated species string.






	
thapbi_pict.assess.main(inputs, known, db_url, method, min_abundance, assess_output, map_output, confusion_output, marker=None, ignore_prefixes=None, debug=False)

	Implement the (sample/species level) thapbi_pict assess command.

The inputs argument is a list of filenames and/or folders.

Must provide:
* at least one XXX.<method>.tsv file
* at least one XXX.<known>.tsv file

These files can cover multiple samples as the sample-tally based classifier
output, or legacy per-sample <sample>.<known>.tsv files.






	
thapbi_pict.assess.save_confusion_matrix(tally: dict[tuple[str, str], int], db_sp_list: list[str], sp_list: list[str], filename: str, exp_total: int, debug: bool = False) → None

	Output a multi-class confusion matrix as a tab-separated table.






	
thapbi_pict.assess.save_mapping(tally: dict[tuple[str, str], int], filename: str, debug: bool = False) → None

	Output tally table of expected species to predicted sp.






	
thapbi_pict.assess.sp_for_sample(fasta_files: list[str], min_abundance: int, pooled_sp: dict[tuple[str, str], str]) → str

	Return semi-colon separated species string from FASTA files via dict.






	
thapbi_pict.assess.sp_in_tsv(classifier_files: list[str], min_abundance: int) → str

	Return semi-colon separated list of species in column 2.

Will ignore genus level predictions.






	
thapbi_pict.assess.tally_files(expected_file: str, predicted_file: str, min_abundance: int = 0) → dict[tuple[str, str], set[str]]

	Make dictionary tally confusion matrix of species assignments.

Rather than the values simply being an integer count, they are
the set of MD5 identifiers (take the length for the count).








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.classify module

Classifying prepared marker sequences using a marker database.

This implements the thapbi_pict classify ... command.


	
thapbi_pict.classify.apply_method_to_seqs(method_fn: Callable, input_seqs: dict[str, str], session, marker_name: str, min_abundance: int = 0, debug: bool = False) → Iterator[tuple[str, str, str, str]]

	Call given method on each sequence in the dict.

Assumes any abundance filter has already been applied. Input is a dict of
identifiers mapped to upper case sequences.






	
thapbi_pict.classify.consoliate_and_sort_taxonomy(genus_species_taxid: Iterable[tuple[str, str, int]]) → list[tuple[str, str, int]]

	Remove any redundant entries, returns new sorted list.

Drops zero taxid entries if has matching non-zero entry.

Drops genus only entries if have species level entries.
Note ignoring the TaxID here - would need to know the parent/child
relationship to confirm the genus we’re removing does have species
level children in the prediction set.






	
thapbi_pict.classify.main(inputs: list[str], session, marker_name: str, method: str, out_dir: str, ignore_prefixes: tuple[str], tmp_dir: str, min_abundance: int = 0, biom=False, debug: bool = False, cpu: int = 0) → list[str | None]

	Implement the thapbi_pict classify command.

For use in the pipeline command, returns a filename list of the TSV
classifier output.

The input files should have been prepared with the same or a lower minimum
abundance - this acts as an additional filter useful if exploring the best
threshold.






	
thapbi_pict.classify.method_blast(input_seqs: dict[str, str], session, marker_name: str, tmp_dir: str, shared_tmp_dir: str, min_abundance: int = 0, debug: bool = False, cpu: int = 0) → Iterator[tuple[str, str, str, str]]

	Classify using BLAST.

Another simplistic classifier, run the reads through blastn
against a BLAST database of our marker sequence database entries.






	
thapbi_pict.classify.method_cleanup() → None

	Free any memory and/or delete any files on disk.

Currently no need to generalise this for the different classifiers, but
could if for example we also needed to delete any files on disk.






	
thapbi_pict.classify.method_dist(input_seqs: dict[str, str], session, marker_name: str, tmp_dir: str, shared_tmp_dir: str, min_abundance: int = 0, debug: bool = False, cpu: int = 0) → Iterator[tuple[str, str, str, str]]

	Classify using edit distance.






	
thapbi_pict.classify.method_identity(input_seqs: dict[str, str], session, marker_name: str, tmp_dir: str, shared_tmp_dir: str, min_abundance: int = 0, debug: bool = False, cpu: int = 0) → Iterator[tuple[str, str, str, str]]

	Classify using perfect identity.

This is a deliberately simple approach, in part for testing
purposes. It looks for a perfect identical entry in the database.






	
thapbi_pict.classify.method_substr(input_seqs: dict[str, str], session, marker_name: str, tmp_dir: str, shared_tmp_dir: str, min_abundance: int = 0, debug: bool = False, cpu: int = 0) → Iterator[tuple[str, str, str, str]]

	Classify using perfect identity including as a sub-string.

Like the ‘identity’ method, but allows for a database where the marker
has not been trimmed, or has been imperfectly trimmed (e.g. primer
mismatch).






	
thapbi_pict.classify.perfect_match_in_db(session, marker_name: str, seq: str, debug: bool = False) → tuple[int | str, str, str]

	Lookup sequence in DB, returns taxid, genus_species, note as tuple.

If the 100% matches in the DB give multiple species, then taxid and
genus_species will be semi-colon separated strings.






	
thapbi_pict.classify.perfect_substr_in_db(session, marker_name: str, seq: str, debug: bool = False) → tuple[int | str, str, str]

	Lookup sequence in DB, returns taxid, genus_species, note as tuple.

If the matches containing the sequence as a substring give multiple species,
then taxid and genus_species will be semi-colon separated strings.






	
thapbi_pict.classify.setup_blast(session, marker_name: str, shared_tmp_dir: str, debug: bool = False, cpu: int = 0)

	Prepare a BLAST DB from the marker sequence DB entries.






	
thapbi_pict.classify.setup_dist2(session, marker_name: str, shared_tmp_dir: str, debug: bool = False, cpu: int = 0) → None

	Prepare a set of all DB marker sequences; set dist to 2.






	
thapbi_pict.classify.setup_dist3(session, marker_name: str, shared_tmp_dir: str, debug: bool = False, cpu: int = 0) → None

	Prepare a set of all DB marker sequences; set dist to 3.






	
thapbi_pict.classify.setup_dist4(session, marker_name: str, shared_tmp_dir: str, debug: bool = False, cpu: int = 0) → None

	Prepare a set of all DB marker sequences; set dist to 4.






	
thapbi_pict.classify.setup_dist5(session, marker_name: str, shared_tmp_dir: str, debug: bool = False, cpu: int = 0) → None

	Prepare a set of all DB marker sequences; set dist to 5.






	
thapbi_pict.classify.setup_dist6(session, marker_name, shared_tmp_dir, debug=False, cpu=0)

	Prepare a set of all DB marker sequences; set dist to 6.






	
thapbi_pict.classify.setup_dist7(session, marker_name, shared_tmp_dir, debug=False, cpu=0)

	Prepare a set of all DB marker sequences; set dist to 7.






	
thapbi_pict.classify.setup_dist8(session, marker_name, shared_tmp_dir, debug=False, cpu=0)

	Prepare a set of all DB marker sequences; set dist to 8.






	
thapbi_pict.classify.setup_dist9(session, marker_name, shared_tmp_dir, debug=False, cpu=0)

	Prepare a set of all DB marker sequences; set dist to 9.






	
thapbi_pict.classify.setup_onebp(session, marker_name: str, shared_tmp_dir: str, debug: bool = False, cpu: int = 0) → None

	Prepare a set of all the DB marker sequences; set dist to 1.






	
thapbi_pict.classify.setup_seqs(session, marker_name: str, shared_tmp_dir: str, debug: bool = False, cpu: int = 0) → None

	Prepare a set of all the DB marker sequences as upper case strings.

Also setup set of sequences in the DB, and dict of genus to NCBI taxid.






	
thapbi_pict.classify.taxid_and_sp_lists(taxon_entries: Iterable) → tuple[int | str, str, str]

	Return semi-colon separated summary of the taxonomy objects from DB.

Will discard genus level predictions (e.g. ‘Phytophthora’) if there is a
species level prediciton within that genus (e.g. ‘Phytophthora infestans’).

If there is a single result, returns a tuple of taxid (integer), genus-species,
and debugging comment (strings).

If any of the fields has conflicting values, returns two semi-colon separated
string instead (in the same order so you can match taxid to species, sorting
on the genus-species string).






	
thapbi_pict.classify.unique_or_separated(values: Sequence[str | int], sep: str = ';') → str

	Return sole element, or a string joining all elements using the separator.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.conflicts module

Explore conflicts at species and genus level.


	
thapbi_pict.conflicts.main(db_url: str, output_filename: str, debug: bool = False) → int

	Implement the thapbi_pict conflicts subcommand.

Looks for taxonomy conflicts at marker, genus or species level, with the
number of marker or genus level conflicts used as the return code. i.e.
Unix failure (non-zero) when there are marker or genus level conflicts.

A marker level conflict is when a unique sequence appears in the DB under
more than one marker name (e.g. both COI and ITS1), which is most likely
an error in the DB construction.

Genus level conflicts are where a unique sequence in the DB is reported
from more than one genus, which is considered undesirable. Similarly for
species level conflicts, but for some markers this is sadly common and not
considered to be an error.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.denoise module

Apply UNOISE read-correction to denoise FASTA file(s).

This implements the thapbi_pict denoise ... command, which is a simplified
version of the thapbi_pict sample-tally ... command intended to be easier
to use outside the THAPBI PICT pipeline.


	
thapbi_pict.denoise.main(inputs: str | list[str], output: str, denoise_algorithm: str, total_min_abundance: int = 0, min_length: int = 0, max_length: int = 9223372036854775807, unoise_alpha: float | None = None, unoise_gamma: int | None = None, gzipped: bool = False, tmp_dir: str | None = None, debug: bool = False, cpu: int = 0)

	Implement the thapbi_pict denoise command.

This is a simplified version of the thapbi_pict sample-tally command
which pools one or more FASTA input files before running the UNOISE read
correction algorithm to denoise the dataset. The input sequences should
use the SWARM <prefix>_<abundance> style naming, which is used on output
(taking the first loaded name if a sequence appears more than once).

Arguments min_length and max_length are applied while loading the input
FASTA file(s).

Argument total_min_abundance is applied after read correction.

Results sorted by decreasing abundance, then alphabetically by sequence.






	
thapbi_pict.denoise.read_correction(algorithm: str, counts: dict[str, int], unoise_alpha: float | None = 2.0, unoise_gamma: int | None = 4, abundance_based: bool = False, tmp_dir: str | None = None, debug: bool = False, cpu: int = 0) → tuple[dict[str, str], dict[str, str]]

	Apply builtin UNOISE algorithm or invoke an external tool like VSEARCH.

Argument algorithm is a string, “unoise-l” for our reimplementation of the
UNOISE2 algorithm, or “usearch” or “vsearch” to invoke those tools at the
command line.

Argument counts is an (unsorted) dict of sequences (for the same amplicon
marker) as keys, with their total abundance counts as values.

Returns a dict mapping input sequences to centroid sequences, and dict of
any chimeras detected (empty for some algorithms).






	
thapbi_pict.denoise.unoise(counts: dict[str, int], unoise_alpha: float | None = 2.0, unoise_gamma: int | None = 4, abundance_based: bool = False, debug: bool = False) → tuple[dict[str, str], dict[str, str]]

	Apply UNOISE2 algorithm.

Argument counts is an (unsorted) dict of sequences (for the same amplicon
marker) as keys, with their total abundance counts as values.

If not specified (i.e. set to zero or None), unoise_alpha defaults to 2.0
and unoise_gamma to 4.

Returns a dict mapping input sequences to centroid sequences, and an empty
dict (no chimera detection performed).






	
thapbi_pict.denoise.usearch(counts: dict[str, int], unoise_alpha: float | None = None, unoise_gamma: int | None = None, abundance_based: bool = False, tmp_dir: str | None = None, debug: bool = False, cpu: int = 0) → tuple[dict[str, str], dict[str, str]]

	Invoke USEARCH to run its implementation of the UNOISE3 algorithm.

Assumes v10 or v11 (or later if the command line API is the same).
Parses the four columns tabbed output.

Returns a dict mapping input sequences to centroid sequences, and a dict
of MD5 checksums of any sequences flagged as chimeras.






	
thapbi_pict.denoise.vsearch(counts: dict[str, int], unoise_alpha: float | None = None, unoise_gamma: int | None = None, abundance_based: bool = True, tmp_dir: str | None = None, debug: bool = False, cpu: int = 0) → tuple[dict[str, str], dict[str, str]]

	Invoke VSEARCH to run its reimplementation of the UNOISE3 algorithm.

Argument counts is an (unsorted) dict of sequences (for the same amplicon
marker) as keys, with their total abundance counts as values.

Returns a dict mapping input sequences to centroid sequences, and a dict
of MD5 checksums of any sequences flagged as chimeras.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.db_import module

Shared code for THAPBI PICT to import FASTA into our database.

This code is used for importing NCBI formatted FASTA files, our curated ITS1
sequence FASTA file databases, and other other FASTA naming conventions.


	
thapbi_pict.db_import.import_fasta_file(fasta_file, db_url, fasta_entry_fn, entry_taxonomy_fn, marker, left_primer=None, right_primer=None, min_length=None, max_length=None, name=None, trim=True, debug=True, validate_species=False, genus_only=False, tmp_dir=None)

	Import a FASTA file into the database.






	
thapbi_pict.db_import.load_taxonomy(session) → set[str]

	Pre-load all the species and synonym names as a set.






	
thapbi_pict.db_import.lookup_genus(session, name: str)

	Find genus entry via taxonomy/synonym table (if present).






	
thapbi_pict.db_import.lookup_species(session, name: str)

	Find this species entry in the taxonomy/synonym table (if present).






	
thapbi_pict.db_import.main(fasta, db_url, marker, left_primer=None, right_primer=None, min_length=0, max_length=9223372036854775807, name=None, convention='simple', sep=None, validate_species=False, genus_only=False, ignore_prefixes=None, tmp_dir=None, debug=False)

	Import FASTA file(s) into the database.

For curated FASTA files, use convention “simple” (default here and at the
command line), and specify any multi-entry separator you are using.

For NCBI files, convention “ncbi” and for the separator use Ctrl+A (type
-s $'\001' at the command line) if appropriate, or “” or None
(function default) if single entries are expected.






	
thapbi_pict.db_import.parse_curated_fasta_entry(text: str, known_species: list[str] | None = None) → tuple[int, str]

	Split an entry of “Accession genus species etc” into fields.

Does not use the optional known_species argument.

Returns a two-tuple of taxid (0 unless taxid=… entry found), genus-species.

>>> parse_curated_fasta_entry("HQ013219 Phytophthora arenaria")
(0, 'Phytophthora arenaria')





Will look for an NCBI taxid after the species name (and ignore anything
following that, such as other key=value entries):

>>> parse_curated_fasta_entry("P13660 Phytophthora aff infestans taxid=907744 etc")
(907744, 'Phytophthora aff infestans')





In this example we expect the NCBI taxid will be matched to a pre-loaded
species name to be used in preference (i.e. ‘Phytophthora aff. infestans’
with a dot in it).






	
thapbi_pict.db_import.parse_ncbi_fasta_entry(text: str, known_species: list[str] | None = None) → tuple[int, str]

	Split an entry of Accession Genus Species-name Description.

Returns a two-tuple: taxid (always zero), presumed genus-species (may be
the empty string).

>>> parse_ncbi_fasta_entry("LC159493.1 Phytophthora drechsleri genes ...")
(0, 'Phytophthora drechsleri')
>>> parse_ncbi_fasta_entry("A57915.1 Sequence 20 from Patent EP0751227")
(0, '')
>>> parse_ncbi_fasta_entry("Y08654.1 P.cambivora ribosomal internal ...")
(0, '')





If a list of known species are used, then right most word is dropped until
the text matches a known name. This discards any description (and strain
level information if the list is only to species level).

If there is no match to the provided names, heuristics are used but this
defaults to the first two words.

Dividing the species name into genus, species, strain etc is not handled
here.






	
thapbi_pict.db_import.parse_ncbi_taxid_entry(text: str, know_species: list[str] | None = None) → tuple[int, str]

	Find any NCBI taxid as a pattern in the text.

Returns a two-tuple of taxid (zero if not found), and an
empty string (use the taxonomy table in the DB to get the
genus-species).

Uses a regular expression based on taxid=<digits>, and
only considers the first match:

>>> parse_ncbi_taxid_entry("HQ013219 Phytophthora arenaria [taxid=]")
(0, '')
>>> parse_ncbi_taxid_entry("HQ013219 Phytophthora arenaria [taxid=123] [taxid=456]")
(123, '')










	
thapbi_pict.db_import.parse_obitools_fasta_entry(text: str, known_species: list[str] | None = None) → tuple[int, str]

	Parse species from the OBITools extended FASTA header.

See https://pythonhosted.org/OBITools/attributes.html which explains that
OBITools splits the FASTA line into identifier, zero or more key=value;
entries, and a free text description.

We are specifically interested in the species_name, genus_name (used if
species_name is missing), and taxid.

>>> entry = "AP009202 species_name=Abalistes stellaris; taxid=392897; ..."
>>> parse_obitools_fasta_entry(entry)
(392897, 'Abalistes stellaris')





Note this will not try to parse any key=value entries embedded in the
first word (which taken as the identifier).






	
thapbi_pict.db_import.parse_sintax_fasta_entry(text: str, known_species: list[str] | None = None) → tuple[int, str]

	Extract the species from SINTAX taxonomy annotation.

See https://drive5.com/usearch/manual/tax_annot.html which defines
this taxonomy annotation convention as used in USEARCH and VSEARCH.
The tax=names field is separated from other fields in the FASTA
description line by semi-colons, for example:

>>> entry = "X80725_S000004313;tax=d:...,g:Escherichia/Shigella,s:Escherichia_coli"
>>> parse_sintax_fasta_entry(entry)
(0, 'Escherichia coli')





If there is no species entry (prefix s:) then the genus is returned
(prefix g:), else the empty string:

>>> parse_sintax_fasta_entry("AB008314;tax=d:...,g:Streptococcus;")
(0, 'Streptococcus')





If the species entry is missing the genus information (which may happen
depending how the file was generated), that is inferred heuristically:

>>> entry = "X80725_S000004313;tax=d:...,g:Escherichia,s:coli"
>>> parse_sintax_fasta_entry(entry)
(0, 'Escherichia coli')





This can be unclear:

>>> entry = ">X80725_S000004313;tax=d:...,g:Escherichia/Shigella,s:Escherichia_coli"
>>> parse_sintax_fasta_entry(entry)
(0, 'Escherichia coli')












            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.db_orm module

Object Relational Mapping for marker sequence database.

Using SQLalchemy, the Python classes defined here give us a
database schema and the code to import/export the data as
Python objects.


	
class thapbi_pict.db_orm.Base(*args: Any, **kwargs: Any)

	Bases: DeclarativeBase

Base class for SQLAlchemy ORM declarations.

See the SQLAlchemy 2.0 documentation. This is expected to be
compatible with type checkers like mypy.






	
class thapbi_pict.db_orm.DataSource(*args: Any, **kwargs: Any)

	Bases: Base

Database entry for a data source (NCBI, curated, etc).

Each accession is expected to be unique within a data source.






	
class thapbi_pict.db_orm.MarkerDef(*args: Any, **kwargs: Any)

	Bases: Base

Database entry for a marker listing primers and amplicon length limits.






	
class thapbi_pict.db_orm.MarkerSeq(*args: Any, **kwargs: Any)

	Bases: Base

Database entry for a single marker reference sequence.






	
class thapbi_pict.db_orm.SeqSource(*args: Any, **kwargs: Any)

	Bases: Base

Database entry for source of a marker sequence entry.


	
marker_definition

	alias of MarkerDef






	
marker_seq

	alias of MarkerSeq






	
source

	alias of DataSource






	
taxonomy

	alias of Taxonomy










	
class thapbi_pict.db_orm.Synonym(*args: Any, **kwargs: Any)

	Bases: Base

Database entry for a synonym of a taxonomy entry.

In addition to direct synonyms, includes the names and synonyms of any
child nodes of the species (e.g. variants, strains, etc).






	
class thapbi_pict.db_orm.Taxonomy(*args: Any, **kwargs: Any)

	Bases: Base

Database entry for a species’ taxonomy entry.






	
thapbi_pict.db_orm.connect_to_db(*args, **kwargs)

	Create engine and return session bound to it.

>>> Session = connect_to_db("sqlite:///:memory:", echo=True)
>>> session = Session()












            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.dump module

Dumping out marker database to text files.

This implements the thapbi_pict dump ... command.


	
thapbi_pict.dump.main(db_url: str, output_filename: str, output_format: str, marker: str | None = None, minimal: bool = False, genus: str = '', species: str = '', sep: str | None = None, debug: bool = True)

	Run the database dump with arguments from the command line.






	
thapbi_pict.dump.none_str(value, none_value: str = '') → str

	Turn value into a string, special case None to empty string.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.edit_graph module

Generate edit-distance network graph from FASTA files.

This implements the thapbi_pict edit-graph ... command.


	
thapbi_pict.edit_graph.main(graph_output: str, graph_format: str, db_url: str, input_file: str, min_abundance: int = 100, show_db_marker: str | None = None, total_min_abundance: int = 0, min_samples: int = 0, max_edit_dist: int = 3, ignore_prefixes: tuple[str, ...] | None = None, debug: bool = False) → int

	Run the edit-graph command with arguments from the command line.

This shows sequences from a database (possibly filtered with species/genus
limits) and/or selected sample-tally TSV file (optionally with classifier
output, and possibly with a minimum abundance limit set here).

Computes a Levenshtein edit-distance matrix from the selected sequences,
which can be exported as a matrix, but is usually converted into a graph
of unique sequences as nodes, with short edit distances as edges.

Graph node size is scaled by sample count (number of FASTA files that it
appears in), and colored by assigned species (from a classifier TSV file).






	
thapbi_pict.edit_graph.write_pdf(G, handle) → None

	Render NetworkX graph to PDF using GraphViz fdp.






	
thapbi_pict.edit_graph.write_xgmml(G, handle, name: str = 'THAPBI PICT edit-graph') → None

	Save graph in XGMML format suitable for Cytoscape import.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.fasta_nr module

Prepare a non-redundant FASTA file using MD5 naming.

This implements the thapbi_pict fasta-nr ... command, using some of the
same code internally as the thapbi_pict prepare-reads command.


	
thapbi_pict.fasta_nr.main(inputs: str | list[str], revcomp: str | list[str], output: str, min_abundance: int = 0, min_length: int = 0, max_length: int = 9223372036854775807, debug: bool = False) → None

	Implement the thapbi_pict fasta-nr command.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.sample_tally module

Prepare a non-redundant TSV file using MD5 naming.

This implements the thapbi_pict sample-tally ... command.


	
thapbi_pict.sample_tally.main(inputs: str | list[str], synthetic_controls: list[str], negative_controls: list[str], output: str, session, marker: str | None = None, spike_genus=None, fasta=None, min_abundance: int = 100, min_abundance_fraction: float = 0.001, total_min_abundance: int = 0, min_length: int = 0, max_length: int = 9223372036854775807, denoise_algorithm: str = '-', unoise_alpha: float = 2.0, unoise_gamma: int = 4, gzipped: bool = False, biom: str | None = None, tmp_dir: str | None = None, debug: bool = False, cpu: int = 0) → None

	Implement the thapbi_pict sample-tally command.

Arguments min_length and max_length are applied while loading the input
per-sample FASTA files.

Argument algorithm is a string, “-” for no read correction (denoising),
“unoise-l” for our reimplementation of the UNOISE2 algorithm, or “usearch”
or “vsearch” to invoke those tools at the command line.

Arguments min_abundance and min_abundance_fraction are applied per-sample
(after denoising if being used), increased by pool if negative or
synthetic controls are given respectively. Comma separated string argument
spike_genus is treated case insensitively.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.prepare module

Prepare raw amplicon sequencing reads (trimming, merging, etc).

This implements the thapbi_pict prepare-reads ... command.


	
thapbi_pict.prepare.find_fastq_pairs(filenames_or_folders: list[str], ext: tuple[str, ...] = ('.fastq', '.fastq.gz', '.fq', '.fq.gz'), ignore_prefixes: tuple[str] | None = None, debug: bool = False) → list[tuple[str, str, str]]

	Interpret a list of filenames and/or foldernames.

Returns a list of tuples (stem, left filename, right filename)
where stem is intended for use in logging and output naming,
and may include a directory name.

The filenames will be normalised relative to the current directory
(so that we can directly compare file lists which could have been
defined inconsistently by the user).

Will ignore “-” if present in the inputs.






	
thapbi_pict.prepare.load_marker_defs(session, spike_genus: str = '') → dict[str, dict[str, int | str | list[tuple[str, str, set[str]]]]]

	Load marker definitions and any spike-in sequences from the DB.






	
thapbi_pict.prepare.main(fastq: list[str], out_dir: str, session, flip: bool = False, min_abundance: int = 2, min_abundance_fraction: float = 0.0, ignore_prefixes: tuple[str] | None = None, merged_cache: str | None = None, tmp_dir: str | None = None, debug: bool = False, cpu: int = 0) → list[str]

	Implement the thapbi_pict prepare-reads command.

For use in the pipeline command, returns a filename listing of the FASTA
files created.






	
thapbi_pict.prepare.make_nr_fasta(input_fasta_or_fastq: str, output_fasta: str, min_abundance: int = 0, min_len: int = 0, max_len: int = 9223372036854775807, weighted_input: bool = False, fastq: bool = False, gzipped: bool = False, header_dict: dict[str, str | int | None] | None = None, debug: bool = False) → tuple[int, int, int, int]

	Trim and make non-redundant FASTA/Q file from FASTA input.

Makes a non-redundant FASTA file with the sequences named
>MD5_abundance\n.

For FASTQ files all input reads are treated as abundance one
(using weighted_input=True gives an error).

If FASTA input and weighted_input=True, reads must follow
>identifier_abundance\n naming and the abundance is used.
Otherwise all treated as abundance one.

Makes a non-redundant FASTA file with the sequences named
>MD5_abundance\n.

Returns the total number of accepted reads before de-duplication
(integer), number of those unique (integer), and the total number
of those which passed the minimum abundance threshold (integer),
and number of those which are unique (integer).






	
thapbi_pict.prepare.marker_cut(marker_definitions, file_pairs: list[tuple[str, str, str]], out_dir: str, merged_cache: str, tmp: str, flip: bool, min_abundance: int, min_abundance_fraction: float, debug: bool = False, cpu: int = 0) → list[str]

	Apply primer-trimming for given markers.






	
thapbi_pict.prepare.merge_paired_reads(raw_R1: str, raw_R2: str, merged_fasta_gz: str, tmp: str, debug: bool = False, cpu: int = 0) → tuple[int, int]

	Create NR FASTA file by overlap merging the paired FASTQ files.






	
thapbi_pict.prepare.parse_cutadapt_stdout(stdout: str) → tuple[int, int]

	Extract FASTA count before and after cutadapt.

>>> parse_cutadapt_stdout(
...     "...\n"
...     "Total reads processed: 5,869\n"
...     "...\n"
...     "Reads written (passing filters): 5,861 (99.9%)\n"
...     "..."
... )
(5869, 5861)










	
thapbi_pict.prepare.parse_flash_stdout(stdout: str) → tuple[int, int]

	Extract FASTQ pair count before/after running flash.

>>> parse_flash_stdout(
...     "...\n"
...     "[FLASH] Read combination statistics:[FLASH]     Total pairs:      6105\n"
...     "[FLASH]     Combined pairs:   5869\n"
...     "..."
... )
(6105, 5869)










	
thapbi_pict.prepare.prepare_sample(fasta_name: str, trimmed_fasta: str, headers: dict[str, int | str | None], min_len: int, max_len: int, min_abundance: int, min_abundance_fraction: float, tmp: str, debug: bool = False, cpu: int = 0) → tuple[int | None, int | None, int | None, int]

	Create marker-specific FASTA file for sample from paired FASTQ.

Applies abundance threshold, and min/max length.

Returns pre-threshold total read count, accepted unique sequence count,
accepted total read count, and the absolute abundance threshold used
(higher of the given absolute threshold or the given fractional threshold).






	
thapbi_pict.prepare.run_cutadapt(long_in: str, out_template: str, marker_definitions: dict[str, Any], flip: bool = False, debug: bool = False, cpu: int = 0) → tuple[int, int]

	Run cutadapt on a single file (i.e. after merging paired FASTQ).

The input and/or output files may be compressed as long as they
have an appropriate suffix (e.g. gzipped with .gz suffix).

Returns FASTA count before and after cutadapt.






	
thapbi_pict.prepare.run_flash(trimmed_R1: str, trimmed_R2: str, output_dir: str, output_prefix: str, debug: bool = False, cpu: int = 0) → tuple[int, int]

	Run FLASH on a pair of trimmed FASTQ files to merge overlapping pairs.

Returns two integers, FASTQ pair count for input and output files.






	
thapbi_pict.prepare.save_nr_fasta(counts: dict[str, int], output_fasta: str, min_abundance: int = 0, gzipped: bool = False, header_dict: dict[str, str | int | None] | None = None) → tuple[int, int]

	Save a dictionary of sequences and counts as a FASTA file.

Writes a FASTA file with header lines starting # (which not all tools will
accept as valid FASTA format).

The output FASTA records are named >MD5_abundance\n, which is the
default style used in SWARM. This could in future be generalised,
for example >MD5;size=abundance;\n for the VSEARCH default.

Results are sorted by decreasing abundance then alphabetically by
sequence.

Returns the total and number of unique sequences accepted (above any
minimum abundance specified).

Use output_fasta=’-’ for standard out.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.summary module

Summarise classification results at sample and read level.

This implements the thapbi_pict summary ... command.

The code uses the term metadata to refer to the user-provided
information about each sample (via a plain text TSV table),
and statistics for the internally tracked information about
each sample like the number of raw reads in the original FASTQ
files (via header lines in the intermediate FASTA files).


	
thapbi_pict.summary.color_bands(meta_groups, sample_color_bands, default_fmt=None, debug: bool = False) → list

	Return a list for formats, one for each sample.






	
thapbi_pict.summary.main(inputs, report_stem: str, method: str, min_abundance: int = 1, metadata_file: str | None = None, metadata_encoding: str | None = None, metadata_cols: str | None = None, metadata_groups: str | None = None, metadata_fieldnames: str | None = None, metadata_index: str | None = None, require_metadata: bool = False, show_unsequenced: bool = True, ignore_prefixes: tuple[str] | None = None, biom: bool = False, debug: bool = False) → int

	Implement the thapbi_pict summary command.

The expectation is that the inputs represent all the samples from
a meaningful group, likely from multiple sequencing runs (plates).






	
thapbi_pict.summary.read_summary(markers, marker_md5_to_seq, marker_md5_species, marker_md5_abundance, abundance_by_samples, stem_to_meta, meta_names, group_col, sample_stats, stats_fields, output, method, min_abundance=1, excel=None, biom=None, debug=False) → None

	Create reads (rows) vs species (cols) report.

The expectation is that the inputs represent all the samples
from one (96 well) plate, or some other meaningful batch.






	
thapbi_pict.summary.sample_summary(sample_species_counts, meta_to_stem, stem_to_meta, meta_names, group_col, sample_stats, stats_fields, show_unsequenced, output, excel, method, min_abundance=1, debug=False)

	Create samples (rows) vs species (cols) report.

The expectation is that the inputs represent all the samples from
a meaningful group, likely from multiple sequencing runs (plates).








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.taxdump module

Code for THAPBI PICT to deal with NCBI taxonomy dumps.

The code is needed initially for loading an NCBI taxdump folder (files
names.dmp, nodes.dmp, merged.dmp etc) into a marker database.


	
thapbi_pict.taxdump.filter_tree(tree: dict[int, int], ranks: dict[str, set[int]], ancestors: set[int]) → tuple[dict[int, int], dict[str, set[int]]]

	Return a filtered version of the tree & ranks dict.

NOTE: Does NOT preserve the original dict order.






	
thapbi_pict.taxdump.get_ancestor(taxid: int, tree: dict[int, int], stop_nodes: set[int]) → int

	Walk up tree until reach a stop node, or root.






	
thapbi_pict.taxdump.load_merged(merged_dmp: str, wanted: set[int] | None = None) → dict[int, int]

	Load mapping of merged taxids of interest from NCBI taxdump merged.dmp file.






	
thapbi_pict.taxdump.load_names(names_dmp: str, wanted: set[int] | None = None) → tuple[dict[int, str], dict[int, set[str]]]

	Load scientific names of species from NCBI taxdump names.dmp file.






	
thapbi_pict.taxdump.load_nodes(nodes_dmp: str, wanted_ranks: Sequence[str] | None = None) → tuple[dict[int, int], dict[str, set[int]]]

	Load the NCBI taxdump nodes.dmp file.

Returns two dicts, the parent/child relationships, and the ranks (values
are lists of taxids).

Default is all ranks, can provide a possibly empty list/set of ranks of
interest.






	
thapbi_pict.taxdump.main(tax: str, db_url: str, ancestors: str, debug: bool = True) → int

	Load an NCBI taxdump into a database.






	
thapbi_pict.taxdump.not_top_species(tree: dict[int, int], ranks: dict[str, set[int]], names: dict[int, str], synonyms: dict[int, set[str]], top_species) → Iterator[tuple[int, str]]

	Find all ‘minor’ species, takes set of species taxid to ignore.

Will map assorted sub-species (i.e. any nodes under top_species) to the
parent species, e.g. varietas ‘Phytophthora nicotianae var. parasitica’
NCBI:txid4791 will be mapped to species ‘Phytophthora nicotianae’
NCBI:txid4790 instead.

Will map anything else to the parent genus, although generally it will
be skipped via the reject_species_name(…) function, e.g.


	no-rank entry ‘unclassified Pythium’ NCBI:txid228096 would be mapped to
Pythium NCBI:txid4797 - although we’d not interested in importing any
unclassified entries.


	no-rank entry ‘environmental samples’ NCBI:txid660914 would be mapped to
genus ‘Hyaloperonospora’ NCBI:txid184462 - but we skip this.


	entry ‘uncultured Hyaloperonospora’ NCBI:txid660915 would be mapped to
genus ‘Hyaloperonospora’ NCBI:txid184462 - but we skip uncultured.




However, if you wanted to import this part of the tree:


	clade entry ‘Skeletonema marinoi-dohrnii complex’ NCBI:txid1171708 would
be mapped to genus ‘Skeletonema’ NCBI:txid2842




Yields (genus taxid, node name) tuples.






	
thapbi_pict.taxdump.species_or_species_groups(tree: dict[int, int], ranks: dict[str, set[int]], names: dict[int, str]) → Iterator[tuple[int, int]]

	Find taxids for species or species groups.

Our “genus” list matches the NCBI rank “genus”, and includes child nodes
as aliases (unless they fall on our “species” list or reject list of
“environmental samples” or “unclassified <genus>”).

However, our “species” list are either NCBI rank “species” or “species
group” (in the later case child species are taken as aliases).

Does not distinguish between “top level” species, or those under “no rank”
nodes like “environmental samples” or “unclassified Phytophthora” (taxid
211524),

Yields (species taxid, genus taxid) tuples.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.utils module

Helper functions for THAPB-PICT code.


	
thapbi_pict.utils.abundance_filter_fasta(input_fasta: str, output_fasta: str, min_abundance: int) → None

	Apply a minimum abundance filter to a FASTA file.






	
thapbi_pict.utils.abundance_from_read_name(text: str, debug: bool = False) → int

	Extract abundance from SWARM style read name.

>>> abundance_from_read_name("9e8f051c64c2b9cc3b6fcb27559418ca_988")
988





If fails, will return one.






	
thapbi_pict.utils.abundance_values_in_fasta(fasta_file: str, gzipped: bool = False) → tuple[int, int, dict[str, int]]

	Return unique count, total abundance, and maximum abundances by spike-in.






	
thapbi_pict.utils.cmd_as_string(cmd)

	Express a list command as a suitably quoted string.

Intended for using in debugging or error messages.






	
thapbi_pict.utils.expand_IUPAC_ambiguity_codes(seq: str)

	Convert to upper case and iterate over possible unabmigous interpretations.

This is a crude recursive implementation, intended for use on sequences with
just a few ambiguity codes in them - it may not scale very well!






	
thapbi_pict.utils.export_sample_biom(output_file: str, seqs: dict[tuple[str, str], str], seq_meta: dict[tuple[str, str], dict], sample_meta: dict[str, dict[str, str | int | None]], counts: dict[tuple[str, str, str], int], gzipped: bool = True) → bool

	Export a sequence vs samples counts BIOM table, with metadata.

Similar to the export_sample_tsv file (our TSV output), expects same
arguments as loaded from one of our TSV files via the parse_sample_tsv
function.

Will save a BIOM v2 HDF5 file if possible and return True. If output
fails (e.g. cannot import the biom Python library), returns False.






	
thapbi_pict.utils.export_sample_tsv(output_file: str, seqs: dict[tuple[str, str], str], seq_meta: dict[tuple[str, str], dict], sample_meta: dict[str, dict[str, str]], counts: dict[tuple[str, str, str], int], gzipped: bool = False) → None

	Export a sequence vs sample counts TSV table, with metadata.

The TSV file ought to be readable by the parse_sample_tsv function, and
is first generated in our pipeline by the sample-tally command, and then
extended by the classify command to add taxonomic sequence metadata.

If the output tabular file argument is “-”, it writes to stdout (not
supported with gzipped mode).

With no sequence metadata this should be accepted as a TSV BIOM file.






	
thapbi_pict.utils.file_to_sample_name(filename: str) → str

	Given filename (with or without a directory name), return sample name only.

i.e. XXX.fasta, XXX.fastq.gz, XXX.method.tsv –> XXX






	
thapbi_pict.utils.find_paired_files(filenames_or_folders, ext1, ext2, ignore_prefixes=None, debug=False, strict=False)

	Interpret a list of filenames and/or foldernames to find pairs.

Looks for paired files named XXX.ext1 and XXX.ext2 which can be
in different directories - duplicated filenames (in different
directories) are considered to be an error.

Having XXX.ext1 without XXX.ext2 is an error in strict mode, or a warning
in debug mode, otherwise silently ignored.

Having XXX.ext2 without XXX.ext1 is silently ignored.

The arguments ext1 and ext2 should include the leading dot.






	
thapbi_pict.utils.find_requested_files(filenames_or_folders: list[str], ext: str | tuple[str, ...] = '.fasta', ignore_prefixes: tuple[str] | None = None, debug: bool = False) → list[str]

	Interpret a list of filenames and/or foldernames.

The extensions argument can be a tuple.






	
thapbi_pict.utils.genus_species_name(genus: str, species: str) → str

	Return name, genus with species if present.

Copes with species being None (or empty string).






	
thapbi_pict.utils.genus_species_split(name: str) → tuple[str, str]

	Return (genus, species) splitting on first space.

If there are no spaces, returns (name, ‘’) instead.






	
thapbi_pict.utils.is_spike_in(sequence: str, spikes: list[tuple[str, str, set[str]]]) → str

	Return spike-in name if sequence matches, else empty string.






	
thapbi_pict.utils.iskeyword()

	x.__contains__(y) <==> y in x.






	
thapbi_pict.utils.kmers(sequence: str, k: int = 31) → set[str]

	Make set of all kmers in the given sequence.






	
thapbi_pict.utils.load_fasta_header(fasta_file, gzipped=False) → dict

	Parse our FASTA hash-comment line header as a dict.






	
thapbi_pict.utils.load_metadata(metadata_file, metadata_encoding, metadata_cols, metadata_groups=None, metadata_name_row=1, metadata_index=0, metadata_index_sep=';', ignore_prefixes=('Undetermined',), debug=False)

	Load specified metadata as several lists.

The encoding argument can be None or “”, meaning use the default.

The columns argument should be a string like “1,3,5” - a comma
separated list of columns to output. The column numbers are assumed
to be one-based as provided by the command line user.

The name row indicates which row in the table contains the names
or descriptions of the metadata columns (one-based).

The index column is assumed to contain one or more sequenced sample
names separated by the character specified (default is semi-colon).
This one-to-many mapping reflecting that a single field sample could
be sequenced more than once (e.g. technical replicates). These sample
names are matched against the file name stems, see function find_metadata.

The metadata table rows are sorted based on the requested colunms.

Return values:


	Dict mapping FASTQ stems to metadata tuples


	Ordered dict mapping metadata tuples to lists of FASTQ stems


	list of the N field names


	Color grouping offset into the N values









	
thapbi_pict.utils.md5_hexdigest(filename: str, chunk_size: int = 1024) → str

	Return the MD5 hex-digest of the given file.






	
thapbi_pict.utils.md5seq(seq: str) → str

	Return MD5 32-letter hex digest of the (upper case) sequence.

>>> md5seq("ACGT")
'f1f8f4bf413b16ad135722aa4591043e'










	
thapbi_pict.utils.onebp_deletions(seq: str) → set[str]

	Generate all variants of sequence with 1bp deletion.

Assumes unambiguous IUPAC codes A, C, G, T only.






	
thapbi_pict.utils.onebp_inserts(seq: str) → set[str]

	Generate all variants of sequence with 1bp insert.

Assumes unambiguous IUPAC codes A, C, G, T only.






	
thapbi_pict.utils.onebp_substitutions(seq: str)

	Generate all 1bp substitutions of the sequence.

Assumes unambiguous IUPAC codes A, C, G, T only.






	
thapbi_pict.utils.parse_sample_tsv(tabular_file: str, min_abundance: int = 0, debug: bool = False, force_upper: bool = True) → tuple[dict[tuple[str, str], str], dict[tuple[str, str], dict[str, str]], dict[str, dict[str, str]], dict[tuple[str, str, str], int]]

	Parse file of sample abundances and sequence (etc).

Optional argument min_abundance is applied to the per sequence per sample
values (i.e. the matrix elements, not the row/column totals).

Columns are:
* Sequence label, <marker>/<identifier>_<abundance>
* Column per sample giving the sequence count
* Sequence itself
* Optional additional columns for sequence metadata (e.g. chimera flags)

Supports optional sample metadata header too as # prefixed header lines.

Returns dictionaries of:
* Sequence keyed on [<marker>, <identitifer>], string
* Sequence metadata keyed [<marker>, <identitifer>], dict of key:value pairs
* Sample metadata keyed on [<sample>], dict of key:value pairs
* Counts keyed on 3-tuple [<marker>, <identifier>, <sample>], integer






	
thapbi_pict.utils.parse_species_tsv(tabular_file, min_abundance=0, req_species_level=False, allow_wildcard=False) → Iterator[tuple[str | None, str, str, str]]

	Parse file of species assignments/predictions by sequence.

Yields tuples of marker name (from the file header line), sequence name,
taxid, and genus_species.






	
thapbi_pict.utils.primer_clean(primer: str) → str

	Handle non-IUPAC entries in primers, maps I for inosine to N.

>>> primer_clean("I")
'N'





Inosine is found naturally at the wobble position of tRNA, and can match
any base. Structurally similar to guanine (G), it preferentially binds
cytosine (C). It sometimes used in primer design (Ben-Dov et al, 2006),
where degeneracy N would give similar results.






	
thapbi_pict.utils.reject_species_name(species: str) → bool

	Reject species names like ‘environmental samples’ or ‘uncultured …’.

Will also reject names with “;” in them as used in the classifier and
reports to combine multiple species entries.






	
thapbi_pict.utils.run(cmd, debug: bool = False, attempts: int = 1) → CompletedProcess

	Run a command via subprocess, abort if fails.

Returns a subprocess.CompletedProcess object, or None if all attempts fail.






	
thapbi_pict.utils.species_level(prediction: str) → bool

	Is this prediction at species level.

Returns True for a binomial name (at least one space), False for genus
only or no prediction.






	
thapbi_pict.utils.split_read_name_abundance(text: str, debug: bool = False) → tuple[str, int]

	Split SWARM style read name into prefix and abundance.

>>> abundance_from_read_name("9e8f051c64c2b9cc3b6fcb27559418ca_988")
'9e8f051c64c2b9cc3b6fcb27559418ca', 988





If fails to detect the abundance, will return the original text
as the prefix with an abundance of 1.






	
thapbi_pict.utils.valid_marker_name(text: str) → bool

	Check the proposed string valid for use as a marker name.

Want to be able to use the string for file or directory names, and also
column names etc in reports. At very least should reject whitespace, line
breaks, and slashes.

Also rejecting all digits, as might want to accept integers as argument
(e.g. cluster array job mapping task numbers to marker numbers).

Also rejecting the underscore, as may want to use it as a field separator
in sequence names (e.g. marker_md5_abundance), and full stop as may
use it as a field separator in filenames.

May want to relax this later, thus defining this central function.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.ena_submit module

Code for sample submission to ENA/SRA.

This implements the thapbi_pict ena-submit ... command.


	
thapbi_pict.ena_submit.load_md5(file_list: list[str]) → dict[str, str]

	Return a dict mapping given filenames to MD5 digests.






	
thapbi_pict.ena_submit.main(fastq: list[str], output: str, metadata_file: str | None = None, metadata_encoding: str | None = None, metadata_cols: str | None = None, metadata_fieldnames: str | None = None, metadata_index: str | None = None, ignore_prefixes: str | None = None, library_name: str = '-', instrument_model: str = 'Illumina MiSeq', design_description: str = '', library_construction_protocol: str = '', insert_size: int = 250, tmp_dir: str | None = None, debug: bool = False)

	Implement the thapbi_pict ena-submit command.






	
thapbi_pict.ena_submit.write_table(handle, pairs: list[tuple[str, str, str]], meta: dict[str, str] | None, library_name: str, instrument_model: str, design_description: str, library_construction_protocol: str, insert_size: int) → None

	Write read file table for ENA upload.








            

          

      

      

    

  

    
      
          
            
  
thapbi_pict.versions module

Helper code to get command line tool versions.

Defines various functions to check a tool is on the $PATH and if so,
return the tool version as a short string (sometimes including a date).

These functions are called from various THAPBI-PICT subcommands which call
external tools to ensure a clear missing dependency message, and to log the
version of the external tool used.

If the tool is not on the path, the commands all return None.

If we cannot parse the output, again the commands return None - which is
likely an indication of a major version change, meaning the tool ought to be
re-evaluated for use with THAPBI-PICT.


	
thapbi_pict.versions.check_rapidfuzz() → str

	Check can import rapidfuzz and confirm recent enough.






	
thapbi_pict.versions.check_tools(names: list[str], debug: bool) → list[str]

	Verify the named tools are present, log versions if debug=True.

Argument names should be an interable of tool binary names.

If all the tools are present, returns a list of version strings.

If any tools are missing (or have a version we could not parse),
aborts.






	
thapbi_pict.versions.version_blast(cmd: str = 'blastn') → str | None

	Return the version of the NCBI BLAST+ suite’s blastn (as a short string).

In the absence of a built in version switch like -v, this works by
parsing the short help output with -h (which does vary between the
tools in the suite):

$ makeblastdb -h | grep BLAST
Application to create BLAST databases, version 2.7.1+

$ blastn -h | grep BLAST
Nucleotide-Nucleotide BLAST 2.7.1+





In the above examples, it would behave as follows:

>>> version_blast("makeblastdb")
'2.7.1+'
>>> version_blast("blastn")
'2.7.1+'





If the command is not on the path, returns None.






	
thapbi_pict.versions.version_cutadapt(cmd: str = 'cutadapt') → str | None

	Return the version of cutadapt (as a short string).

Uses the output with --version:

$ cutadapt --version
1.18





It would capture this:

>>> version_cutadapt()
'1.18'





If the command is not on the path, returns None.






	
thapbi_pict.versions.version_flash(cmd: str = 'flash') → str | None

	Return the version of flash (as a short string).

Parses the output with -v:

$ flash -v | head -n 1
FLASH v1.2.11





It would capture the version from the first line as follows:

>>> version_flash()
'v1.2.11'





If the command is not on the path, returns None.






	
thapbi_pict.versions.version_graphviz_fdp(cmd: str = 'fdp') → str | None

	Return the version of the GraphViz tool fdp (as a short string).

Depends on the -V switch:

$ fdp -V
fdp - graphviz version 9.0.0 (0)





In the above example, it would behave as follows:

>>> version_graphviz_fdp()
'9.0.0'





If the command is not on the path, returns None.






	
thapbi_pict.versions.version_usearch(cmd: str = 'usearch') → str | None

	Return the version of usearch (as a short string).

Uses the output with --version:

$ usearch --version
usearch v11.0.667_i86linux32





It would capture this:

>>> version_vsearch()
'v11.0.667'





If the command is not on the path, returns None.






	
thapbi_pict.versions.version_vsearch(cmd: str = 'vsearch') → str | None

	Return the version of vsearch (as a short string).

Uses the output with --version:

$ vsearch --version
...
vsearch v2.22.1_macos_x86_64, 8.0GB RAM, 8 cores
...





It would capture this:

>>> version_vsearch()
'v2.22.1'





If the command is not on the path, returns None.








            

          

      

      

    

  

    
      
          
            
  
Release History



	Version

	Date

	Notes





	v1.0.12

	2024-03-11

	Restored Python 3.8 support. More robust import of SINTAX style FASTA files.



	v1.0.11

	2024-03-05

	Harmonize ASV naming in BIOM output, optional sample-tally BIOM output.



	v1.0.10

	2024-02-26

	Sample report ‘Unique’ column is now the unique ASV count. Misc updates.



	v1.0.9

	2024-02-12

	Using Python type annotations (internal code change). Python 3.9 onwards.



	v1.0.8

	2024-02-06

	Additional curated Phytophthora in default DB. Adds 1s6g classifier.



	v1.0.7

	2024-01-29

	Treat Phytophthora cambivora as a synonym of Phytophthora x cambivora.



	v1.0.6

	2024-01-24

	Added some Peronosclerospora to curated DB. Updated NCBI import.



	v1.0.5

	2023-11-22

	Updated NCBI import, and scripted most of what was a semi-manual process.



	v1.0.4

	2023-11-20

	Dropped unused -m / --method argument to edit-graph command.



	v1.0.3

	2023-09-04

	Updated NCBI import and curated P. condilina entries in default DB.



	v1.0.2

	2023-08-18

	Use sum of cutadapt and singleton values etc for pooled marker reports.



	v1.0.1

	2023-07-26

	Fixed some rare corner-case read-corrections in unoise-l mode.



	v1.0.0

	2023-05-19

	Minor documentation changes, linked to Cock et al. (2023) preprint.



	v0.14.1

	2023-03-13

	Optional BIOM output using the biom-format Python library.



	v0.14.0

	2023-03-02

	Offers UNOISE read-correction, built-in or invoking USEARCH or VSEARCH.



	v0.13.6

	2022-12-28

	Factional abundance threshold in sample-tally was not strict enough.



	v0.13.5

	2022-12-21

	Misc small fixes and documentation updates.



	v0.13.4

	2022-12-07

	Support abundance thresholding in the sample-tally step. Log controls.



	v0.13.3

	2022-11-25

	Using new sample-tally command in pipeline, not fasta-nr.



	v0.13.2

	2022-11-11

	Sped up substr classifier, especially with larger databases.



	v0.13.1

	2022-09-21

	Minor default DB update. Cap --cpu by available CPUs. Faster DB import.



	v0.13.0

	2022-09-14

	Sped up distance based classifiers by better use of RapidFuzz library.



	v0.12.9

	2022-08-19

	Updates default DB with new curated species and improved left trimming.



	v0.12.8

	2022-08-08

	Treat NCBI taxonomy ‘equivalent name’ as a synonym. Minor DB update.



	v0.12.7

	2022-07-26

	NCBI taxid in genus-only fallback classifier output. Minor DB update.



	v0.12.6

	2022-07-25

	Changes to how NCBI sequences are trimmed for use in the default DB.



	v0.12.5

	2022-07-08

	Merged/child NCBI taxid entries as synonyms. Import FASTA with taxid.



	v0.12.4

	2022-07-07

	Updated edit-graph code to work with RapidFuzz v2.0.0 or later.



	v0.12.3

	2022-07-06

	Updated NCBI taxonomy and bulk genus-only entries in default DB.



	v0.12.2

	2022-06-15

	Updates to the curated entries in the default Phytophthora ITS1 DB.



	v0.12.1

	2022-05-18

	Fix missing field regression on reports including unsequenced samples.



	v0.12.0

	2022-04-19

	Set fractional abundance threshold via synthetic spike-ins. Cutadapt v4.0+.



	v0.11.6

	2022-03-09

	Fix regression on reports including unsequenced samples.



	v0.11.5

	2022-02-18

	Reporting enhancements when using spike-in (synthetic) controls.



	v0.11.4

	2022-02-08

	Updates to default curated DB, adding several more Phytophthora species.



	v0.11.3

	2022-02-01

	Fix dynamic k-mer threshold for synthetic spike-in control sequences.



	v0.11.2

	2022-01-20

	Windows testing on AppVeyor, with minor Windows specific fixes.



	v0.11.1

	2022-01-18

	Using rapidfuzz rather than python-Levenshtein.



	v0.11.0

	2022-01-13

	Multi-marker reports, pooling predictions from each marker.



	v0.10.6

	2022-01-12

	Fixed slow-down in v0.10.0 on large datasets with small DB.



	v0.10.5

	2021-12-23

	Default for -f / --abundance-fraction is now 0.001, meaning 0.1%.



	v0.10.4

	2021-11-24

	Updates to default curated DB, including newer NCBI taxonomy.



	v0.10.3

	2021-11-19

	New -f / --abundance-fraction setting, off by default.



	v0.10.2

	2021-11-05

	Updates to default curated DB. Small changes to NCBI taxonomy loading.



	v0.10.1

	2021-07-28

	Fix for using SQLAlchemy v1.3 (previous release needed v1.4).



	v0.10.0

	2021-07-28

	Rework to handle larger DB and multiple markers. Modifies DB schema.



	v0.9.9

	2021-07-08

	Drop SWARM based classifiers. Single intermediate TSV file in pipeline.



	v0.9.8

	2021-06-17

	Drop edit-graph in pipeline. Require full length primers in merged reads.



	v0.9.7

	2021-06-04

	USEARCH SINTAX & OBITools FASTA conventions in import command.



	v0.9.6

	2021-05-21

	Update default DB taxonomy, Peronosporales & Pythiales max 450bp.



	v0.9.5

	2021-05-10

	Simplify to just one import command for pre-trimmed FASTA input.



	v0.9.4

	2021-05-05

	Drop unused metadata fields in DB schema. Fix GML format edit graphs.



	v0.9.3

	2021-05-04

	Drop HMM for spike-in control detection, now via DB & k-mer counting.



	v0.9.2

	2021-04-28

	Fix obscure problem using relative versions of absolute paths.



	v0.9.1

	2021-04-20

	Set metadata encoding. Spike-in HMM default now off.



	v0.9.0

	2021-04-19

	Drop use of Trimmomatic, faster and slightly higher read counts.



	v0.8.4

	2021-04-13

	Sped up re-running by delaying method setup until and if required.



	v0.8.3

	2021-04-13

	Include abundance threshold in summary reports (if varied by sample).



	v0.8.2

	2021-04-13

	Sample report pooling script. Fix -p in prepare-reads.



	v0.8.1

	2021-04-09

	Drop species list embedded in intermediate TSV, assess needs DB now.



	v0.8.0

	2021-04-06

	Revise genus/species columns in sample report. Add scripts/ folder.



	v0.7.11

	2021-03-30

	assess now only at sample level. Abundance threshold in classify.



	v0.7.10

	2021-03-24

	Pipeline includes fasta-nr command making non-redundant FASTA file.



	v0.7.9

	2021-03-15

	Option to show unsequenced entries in summary sample report (-u).



	v0.7.8

	2021-03-11

	Only import IUPAC DNA characters to DB. Fix N. valdiviana in default DB.



	v0.7.7

	2021-02-24

	Revise default ITS1 DB: NCBI Oomycetes, more curation & single isolates.



	v0.7.6

	2021-02-17

	curated-seq replaces seq-import, used when building default DB.



	v0.7.5

	2021-02-16

	Refine default DB by adjusting how genus-level NCBI import trimmed.



	v0.7.4

	2021-02-15

	Edit-graph genus-only labels. New 1s2g, 1s4g & 1s5g classifiers.



	v0.7.3

	2021-01-29

	Update NCBI import, taxonomy. New 1s3g classifier. Use cutadapt v3.0+.



	v0.7.2

	2020-10-06

	New ena-submit command for use with interactive ENA read submission.



	v0.7.1

	2020-09-29

	Curated Phytophthora DB minor updates. Classifier output in edit-graph.



	v0.7.0

	2020-04-02

	Read counts etc as a header in intermediate FASTA files; shown in reports.



	v0.6.15

	2020-03-12

	Fix regression in read report column sorting.



	v0.6.14

	2020-03-12

	Merge read-summary & sample-summary into new summary command.



	v0.6.13

	2020-03-09

	New classifier method substr for poorly trimmed DB content.



	v0.6.12

	2020-03-09

	New advanced setting --merged-cache intended for multiple marker use.



	v0.6.11

	2020-03-02

	Update genus-level only NCBI import, restrict to those with 32bp leader.



	v0.6.10

	2020-02-24

	Treat I (for inosine as in tRNA) in primers as N (IUPAC code for any base).



	v0.6.9

	2020-02-20

	Allow pre-primer-trimmed FASTQ. Fix row coloring when missing samples.



	v0.6.8

	2020-02-17

	Metadata -x default now column 1. Fix read report metadata captions.



	v0.6.7

	2020-02-13

	Method in pipeline filenames; max sample abundance in read reports.



	v0.6.6

	2020-02-05

	Coloring groups in sample-report. Can call assessment from pipeline.



	v0.6.5

	2020-01-27

	Do --flip in prepare-reads using cutadapt v2.8 or later.



	v0.6.4

	2020-01-23

	curated-import accepts primers. Reduce memory usage for onebp.



	v0.6.3

	2020-01-20

	Treat NCBI taxonomy “includes” as synonyms, 396 new species aliases.



	v0.6.2

	2020-01-14

	Memory optimisation to the default onebp classifier.



	v0.6.1

	2020-01-08

	Requires at least Python 3.6 as now using f-strings (internal change only).



	v0.6.0

	2020-01-08

	Stop discarding normally conserved Phytophthora ITS1 marker 32bp start.



	v0.5.8

	2019-12-11

	Correction to start of a P. parsiana curated sequence in our DB.



	v0.5.7

	2019-12-09

	Replace min bit score with min percentage coverage in blast classifier.



	v0.5.6

	2019-12-04

	Import species under “unclassified Phytophthora” as genus Phytophthora.



	v0.5.5

	2019-12-03

	Update NCBI taxonomy, adds Phytophthora caryae and P. pseudopolonica.



	v0.5.4

	2019-12-02

	Only use HMM to detect synthetic read negative controls.



	v0.5.3

	2019-11-25

	Replace HMM filter on importing to the database with length check only.



	v0.5.2

	2019-11-25

	Remove redundant use of HMM filter in seq-import command.



	v0.5.1

	2019-11-22

	Update NCBI taxonomy, adds Phytophthora oreophila and P. cacuminis.



	v0.5.0

	2019-11-21

	Only use HMM as a filter, not for trimming in DB import or classify steps.



	v0.4.19

	2019-11-19

	Additional curated entries in default ITS1 database.



	v0.4.18

	2019-11-19

	Rework sample-summary table output, now samples vs species with Excel.



	v0.4.17

	2019-11-15

	Control based minimum abundance threshold applied at folders level.



	v0.4.16

	2019-11-15

	Bug fix in fasta-nr when using input records with descriptions.



	v0.4.15

	2019-11-04

	Harmonise dump FASTA & curated-import with semi-colon separator.



	v0.4.14

	2019-10-23

	Configurable FASTA entry separator for curated-import & ncbi-import.



	v0.4.13

	2019-10-22

	Fix 5 cases missing A near end, ...CTGAAAACT to ...CTGAAAAACT.



	v0.4.12

	2019-10-22

	Remove now unused legacy-import and database/legacy/ files.



	v0.4.11

	2019-10-21

	Update curated DB entries, focused on truncated sequences.



	v0.4.10

	2019-10-21

	New curated-import command, rework handling of curated DB entries.



	v0.4.9

	2019-10-17

	New sample-summary switch -q / --requiremeta. NetworkX v2.4 fix.



	v0.4.8

	2019-10-11

	New fasta-nr command for use in alternatives to prepare-reads.



	v0.4.7

	2019-10-10

	New --minlen & --maxlen args for prepare-reads and pipeline.



	v0.4.6

	2019-10-02

	Forgot to include updated DB with the PyPI release.



	v0.4.5

	2019-10-02

	Apply primer trimming to ncbi-import (crop if primers found).



	v0.4.4

	2019-10-02

	New --hmm & --flip arguments for prepare-reads and pipeline.



	v0.4.3

	2019-09-26

	New conflicts command reports genus/species level conflicts in DB.



	v0.4.2

	2019-09-26

	Drop clade from taxonomy table, require unique species entries.



	v0.4.1

	2019-09-16

	Include NCBI strains/variants/etc & their synonyms as species synonyms.



	v0.4.0

	2019-09-12

	NCBI taxonomy synonym support; Oomycetes default taxonomy import.



	v0.3.12

	2019-09-12

	New dump option -m /  --minimal for DB comparison.



	v0.3.11

	2019-09-09

	Update default DB and tests to use September 2019 NCBI taxonomy.



	v0.3.10

	2019-09-05

	Handle missing or empty input FASTQ files more gracefully.



	v0.3.9

	2019-08-14

	Log BLAST bit score, merge assess warnings, 3dp for ad-hoc loss.



	v0.3.8

	2019-08-09

	The blast classifier now applies a minimum BLAST bit score of 100.



	v0.3.7

	2019-08-05

	Add Python API to the main documentation.



	v0.3.6

	2019-07-19

	Add Zenodo FASTQ link to worked example and use assess command.



	v0.3.5

	2019-07-12

	Add missing T or CT to 11 of the legacy ITS1 sequences in the DB.



	v0.3.4

	2019-07-08

	Worked example using woody hosts dataset from Riddell et al. (2019).



	v0.3.3

	2019-07-04

	Fix regression in group coloring for read-summary Excel output.



	v0.3.2

	2019-07-04

	Read The Docs; use -i / --input consistently - no positional args.



	v0.3.1

	2019-06-27

	Reformat documentation to use reStructuredText rather than Markdown.



	v0.3.0

	2019-06-26

	Include four gBlocks synthetic negative controls in DB and pipeline.



	v0.2.6

	2019-06-25

	Phytophthora ITS1 HMM threshold set within model file, not in code.



	v0.2.5

	2019-06-21

	Include XGMML edit-graph (for Cytoscape use) in pipeline output.



	v0.2.4

	2019-06-21

	Fix 3 Hyaloperonospora also in Peronospora in default DB.



	v0.2.3

	2019-06-18

	Sample count rather than total read abundance for edit-graph node size.



	v0.2.2

	2019-06-12

	New edit-graph command. Use Cytoscape etc, or PDF via GraphViz.



	v0.2.1

	2019-05-27

	Cope better with multiple (short) ITS1 fragments during classification.



	v0.2.0

	2019-05-14

	Limit ITS1 length, 100-250bp. Exclude uncultured NCBI entries from DB.



	v0.1.12

	2019-05-09

	Sort read-summary by species. Set coloring group at command line.



	v0.1.11

	2019-05-06

	Excel output from read-summary with formatting applied.



	v0.1.10

	2019-05-03

	Tweak command line API, renamed plate-summary to read-summary.



	v0.1.9

	2019-05-02

	New pipeline subcommand (prepare reads, classify, and report).



	v0.1.8

	2019-05-01

	Standard errors for missing external tools. Log versions in verbose mode.



	v0.1.7

	2019-05-01

	Chang default classifier method from identity to more fuzzy onebp.



	v0.1.6

	2019-04-30

	Include ready to use binary ITS1 DB in source tar-ball & wheel files.



	v0.1.5

	2019-04-29

	Rework optional metadata integration and its display in summary reports.



	v0.1.4

	2019-04-25

	Sort samples using the optional metadata fields requested in reports.



	v0.1.3

	2019-04-24

	Can optionally display sample metadata from TSV file in summary reports.



	v0.1.2

	2019-04-17

	Keep searching if onebp classifier perfect match is at genus-level only.



	v0.1.1

	2019-04-16

	Expand default taxonomy & DB from Peronosporaceae to Peronosporales.



	v0.1.0

	2019-04-04

	Include a bundled ITS1 DB.



	v0.0.15

	2019-04-03

	Support for genus-level only entries in the DB.



	v0.0.14

	2019-04-01

	MD5 in dump output. Fix importing sequences failing taxonomic validation.



	v0.0.13

	2019-03-22

	Drop conserved 32bp when primer trim. Assess at sample level by default.



	v0.0.12

	2019-03-11

	Fix bug in swarmid classifier.



	v0.0.11

	2019-03-08

	Sped up FASTQ preparation by using flash instead of pear v0.9.6.



	v0.0.10

	2019-03-06

	Replace primer code allowing only 1bp differences with cutadapt.



	v0.0.9

	2019-03-05

	Look for expected primers, discards mismatches. Cache HMM files locally.



	v0.0.8

	2019-02-21

	Fix multi-class TN under-counting. New loss metric, swarmid classifier.



	v0.0.7

	2019-02-12

	New plate-summary command, onebp classifier.



	v0.0.6

	2019-02-07

	Misc. cleanup and import fixes.



	v0.0.5

	2019-02-06

	Hamming Loss in assessment output.



	v0.0.4

	2019-01-24

	New seq-import command, blast classifier, multi-taxon predictions.



	v0.0.3

	2019-01-22

	Simplify generated filenames.



	v0.0.2

	2019-01-21

	New assess command.



	v0.0.1

	2019-01-17

	Initial framework with identity and swarm classifiers.









            

          

      

      

    

  

    
      
          
            
  
Development Notes


Python style conventions

The Python code follows PEP8 [https://www.python.org/dev/peps/pep-0008/]
and PEP257 docstring [https://www.python.org/dev/peps/pep-0257/] style,
guided by the Zen of Python [https://www.python.org/dev/peps/pep-0020/].

Practically, coding style is enforced with several command line tools
including ruff [https://github.com/astral-sh/ruff] (which implements
a faster version of black [https://github.com/python/black]) and flake8 [http://flake8.pycqa.org/] (with plugins) run via the tool pre-commit [https://pre-commit.com/].

You can install these tools using:

$ pip install pre-commit
$ pre-commit install  # within the thapbi_pict main directory





The checks will then run automatically when you make a git commit. You can
also run the checks directly using:

$ pre-commit run -a





If your editor can be configured to run flake8 and/or ruff automatically,
even better. These checks are done as part of the continuous integration when
changes are made on GitHub.



Continuous Integration

Currently this is setup to do automated testing under Linux using free
continuous integration services:


	CircleCI (Linux): https://circleci.com/gh/peterjc/thapbi-pict/tree/master


	AppVeyor (Windows): https://ci.appveyor.com/project/peterjc/thapbi-pict/history






Dependencies

See the main installation instructions for end users. For development we need
Python, a bash shell, git, and various other command line dependencies.
Installing THAPBI PICT from source (see below), will fetch Python dependencies.

The two requirements files (requirements.txt for Python dependencies, and
requirements-ext.txt for external command line bioinformatics tools) are
used in the continuous integration testing. These files can contain exact
pinned dependency versions, allowing us to define a more reproducible
environment for running this software if needed.

On Linux or macOS, you should have the bash shell and standard Unix tools like
grep already installed. We recommend installing our specific command line
tool dependencies with  Conda [https://conda.io/] packaging system, via
the BioConda [https://bioconda.github.io/] channel:

$ conda install --file requirements-ext.txt





On Windows, few of the dependencies are available via Conda. The Git For Windows [https://gitforwindows.org] installer will provide git, bash, grep,
etc. You will also need to manually install sqlite3, flash, and NCBI BLAST.



Installing from source

First, download the code from GitHub and decompress it if required. The best
way to do this if you are likely to contribute any changes is at the command
line with git.

$ git clone https://github.com/peterjc/thapbi-pict.git
$ cd thapbi-pict





Then build the default reference database, by loading the provided FASTA files
into SQLite3, see database/README.rst for more information on this. Make it
read only to prevent accidental edits:

$ cd database
$ ./build_ITS1_DB.sh
$ cd ..
$ cp database/ITS1_DB.sqlite thapbi_pict/ITS1_DB.sqlite
$ chmod a-w thapbi_pict/ITS1_DB.sqlite





Assuming your default Python is at least version 3.7, to install the tool and
automatically get our Python dependencies:

$ pip install .





If your system defaults to Python 2, try pip3 install . or
python3 -m pip install . instead.

Once installed, you should be able to run the tool using:

$ thapbi_pict





This should automatically find the installed copy of the Python code.
Use thapbi_pict -v to report the version, or thapbi_pict -h for help.



Release process

For a release, start from a clean git checkout (to reduce the chance of
bundling any stray local files despite a cautious MANIFEST.in). You will
need some python tools:

$ pip install -U pip twine build





First confirm if the DB at thapbi_pict/ITS1_DB.sqlite is up to date:

sqlite3 thapbi_pict/ITS1_DB.sqlite .dump | grep -i "Imported with" | head -n 1





If there have been changes requiring the DB be rebuilt, do this:

cd database
./build_ITS1_DB.sh
git commit ITS1_DB.fasta -m "Rebuilt DB"
cd ..





Next confirm the CHANGELOG.rst file is up to date, including using today’s
date for the new version. Then actually do the build:

rm -rf build/
python -m build
git tag vX.Y.Z
git push origin master --tags
twine upload dist/thapbi_pict-X.Y.Z*





The PyPI upload should trigger an automated pull request updating the
THAPBI PICT BioConda recipe [https://github.com/bioconda/bioconda-recipes/blob/master/recipes/thapbi-pict/meta.yaml]
which will need reviewing (e.g. new dependencies) before it is merged.

Must also turn the git tag into a “release” on GitHub, and attach the
wheel to it. This will generate a version specific DOI on Zenodo.
https://github.com/peterjc/thapbi-pict/releases
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      	unique_or_separated() (in module thapbi_pict.classify)


  

  	
      	unoise() (in module thapbi_pict.denoise)
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      	valid_marker_name() (in module thapbi_pict.utils)


      	version_blast() (in module thapbi_pict.versions)


      	version_cutadapt() (in module thapbi_pict.versions)
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      	write_pdf() (in module thapbi_pict.edit_graph)


  

  	
      	write_table() (in module thapbi_pict.ena_submit)
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shared name name MD5 Total-abundance Max-sample-abundance Sample-count in-db Genus Taxonomy
P. capsici;P. glovera P. capsici;P.... c50b7fcéd... 2221 937 3 1 Phytophthora Phytophthora cap...
P. siskiyouensis P.siskiyoue...  46e829al9... 1012 372 3 1 Phytophthora Phytophthora sis...
P. foliorum P. foliorum f696591f9... 911 321 3 1 Phytophthora Phytophthora foli...
P. rubi P. rubi d8613e80b... 898 349 3 1 Phytophthora Phytophthora rubi
P.obscura P.obscura 688calf52... 3834 1165 6 1 Phytophthora Phytophthora obs...
P. agathidicida;P. casta... P. agathidici... ~29de89098... 1526 656 3 1 Phytophthora Phytophthora aga...
P. fallax P. fallax 07874837d... 602 212 3 1 Phytophthora Phytophthora fallax
P. plurivora P. plurivora 6e847180a... 6542 3098 8 1 Phytophthora Phytophthora plu...
% P. capsici P. capsici 18ab920ad... 418 213 2 1 Phytophthora Phytophthora cap...
'9 P. austrocedri P.austrocedri  d9bc3879f... 83641 8111 50 1 Phytophthora Phytophthora aus...
= P. kernoviae P. kernoviae 3d3f43d07... 1433 1280 2 1 Phytophthora Phytophthora ker...
g P. aleatoria;P. cactorum P. aleatoria;... f27df8e875... 16381 3690 27 1 Phytophthora Phytophthora ale...
& P. ilicis P. ilicis 895041725... 9017 2774 6 1 Phytophthora Phytophthora ilicis
uj P. pseudosyringae P. pseudosy... 2e4f0ed53... 163112 8827 65 1 Phytophthora Phytophthora pse...
P_aonanodvides P.aonanod... c1a720h20.. 20413 2254 31 0 Phvtonhthara Phvtonhthara ao...
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